$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Nanoparticle drug delivery systems for inner ear therapy: An overview 원문보기

Journal of drug delivery science and technology, v.39, 2017년, pp.28 - 35  

Valente, F. ,  Astolfi, L. ,  Simoni, E. ,  Danti, S. ,  Franceschini, V. ,  Chicca, M. ,  Martini, A.

Abstract AI-Helper 아이콘AI-Helper

Local drug delivery based on nanoparticles (NP) represents a novel strategy to improve inner ear treatments. The intratympanic delivery of NP may be suitable to treat or prevent hearing loss originating from damage to hair cells and spiral ganglion neurons in the cochlea. Numerous experimental studi...

주제어

참고문헌 (76)

  1. Curr. Drug Metab. Chen 11 886 2010 10.2174/138920010794479673 Disposition of nanoparticle-based delivery system via inner ear administration 

  2. Acta Otolaryngol. Juhn 91 529 1981 10.3109/00016488109138538 Labyrinthine barriers and cochlear homeostasis 

  3. Hear Res. Inamura 61 12 1992 10.1016/0378-5955(92)90030-Q Permeability changes of the blood-labyrinth barrier measured in vivo during experimental treatments 

  4. Acta Otolaryngol. Lefebvre 122 698 2002 10.1080/003655402_000028037 Steroid perfusion of the inner ear for sudden sensorineural hearing loss after failure of conventional therapy: a pilot study 

  5. Curr. Opin. Neurol. Minor 17 9 2004 10.1097/00019052-200402000-00004 Meniere's disease 

  6. Trends Pharmacol. Sci. Malam 30 592 2009 10.1016/j.tips.2009.08.004 Liposomes and nanoparticles: nanosized vehicles for drug delivery in cancer 

  7. Am. J. Respir. Crit. Care Med. Gelperina 172 1487 2005 10.1164/rccm.200504-613PP The potential advantages of nanoparticle drug delivery systems in chemotherapy of tuberculosis 

  8. Nanomedicine (Lond) Buckiova 7 1339 2012 10.2217/nnm.12.5 Minimally invasive drug delivery to the cochlea through application of nanoparticles to the round window membrane 

  9. Otolaryngol. Clin. North Am. Banerjee 37 1035 2004 10.1016/j.otc.2004.04.003 The biology of intratympanic drug administration and pharmacodynamics of round window drug absorption 

  10. Microsc. Res. Tech. Goycoolea 36 201 1997 10.1002/(SICI)1097-0029(19970201)36:3<201::AID-JEMT8>3.0.CO;2-R Round window membrane. Structure function and permeability: a review 

  11. Hear Res. Shi 338 52 2016 10.1016/j.heares.2016.01.010 Pathophysiology of the cochlear intrastrial fluid-blood barrier (review) 

  12. Acta Otolaryngol. Suppl. Goycoolea 493 43 1992 The round window membrane under normal and pathological conditions 

  13. Volta. Rev. Salt 105 277 2005 Pharmacokinetics of drug entry into cochlear fluids 

  14. Fortschr Med. Jahnke 98 330 1980 Permeability barriers of the inner ear. Fine structure and function 

  15. Neurosci. Lett. Saito 303 189 2001 10.1016/S0304-3940(01)01738-4 Expression of p-glycoprotein is associated with that of multidrug resistance protein 1 (MRP1) in the vestibular labyrinth and endolymphatic sac of the Guinea pig 

  16. Acta Pharm. Sin. B Liu 3 86 2013 10.1016/j.apsb.2013.02.003 Current strategies for drug delivery to the inner ear 

  17. Adv. Drug Deliv. Rev. Swan 60 1583 2008 10.1016/j.addr.2008.08.001 Inner ear drug delivery for auditory applications 

  18. Ear Hear McCall 31 156 2010 10.1097/AUD.0b013e3181c351f2 Drug delivery for treatment of inner ear disease: current state of knowledge 

  19. Laryngoscope Tamura 115 2000 2005 10.1097/01.mlg.0000180174.81036.5a Drug delivery to the cochlea using PLGA nanoparticles 

  20. Nanomedicine (Lond) Horie 5 1331 2010 10.2217/nnm.10.88 Stealth-nanoparticle strategy for enhancing the efficacy of steroids in mice with noise-induced hearing loss 

  21. Curr. Opin. Otolaryngol. Head. Neck Surg. Bowe 18 377 2010 10.1097/MOO.0b013e32833d30f0 Round window perfusion dynamics: implications for intracochlear therapy 

  22. Otol. Neurotol. De Ceulaer 24 769 2003 10.1097/00129492-200309000-00014 Long-term evaluation of the effect of intracochlear steroid deposition on electrode impedance in cochlear implant patients 

  23. Laryngoscope Paulson 118 706 2008 10.1097/MLG.0b013e31815f8e41 A novel controlled local drug delivery system for inner ear disease 

  24. Hear Res. Hahn 212 236 2006 10.1016/j.heares.2005.12.001 Cochlear microdialysis for quantification of dexamethasone and fluorescein entry into scala tympani during round window administration 

  25. Eur. J. Nanomedicine Ciorba 2 4 2009 Cochlear implants and inner ear based therapy 

  26. Int. J. Pharm. El Kechai 494 83 2015 10.1016/j.ijpharm.2015.08.015 Recent advances in local drug delivery to the inner ear 

  27. Drug Discov. Today Salt 10 1299 2005 10.1016/S1359-6446(05)03574-9 Local inner-ear drug delivery and pharmacokinetics 

  28. J. Biomed. Nanotechnol. Jager 5 130 2009 10.1166/jbn.2009.1004 Sustained release from lipid-core nanocapsules by varying the core viscosity and the particle surface area 

  29. Eur. J. Pharm. Biopharm. Hureaux 73 239 2009 10.1016/j.ejpb.2009.06.013 Lipid nanocapsules: ready-to-use nanovectors for the aerosol delivery of paclitaxel 

  30. Pharm. Res. Hureaux 27 421 2010 10.1007/s11095-009-0024-y Toxicological study and efficacy of blank and paclitaxel-loaded lipid nanocapsules after i.v. administration in mice 

  31. Nanomedicine (Lond) Scheper 4 623 2009 10.2217/nnm.09.41 Potential novel drug carriers for inner ear treatment: hyperbranched polylysine and lipid nanocapsules 

  32. Int. J. Pharm. Zhang 404 211 2011 10.1016/j.ijpharm.2010.11.006 Inner ear biocompatibility of lipid nanocapsules after round window membrane application 

  33. J. Biomed. Mater Res. B Appl. Biomater. Zou 87 10 2008 10.1002/jbm.b.31058 Distribution of lipid nanocapsules in different cochlear cell populations after round window membrane permeation 

  34. J. Drug Target Liu 21 846 2013 10.3109/1061186X.2013.829075 The effect of surface charge of glycerol monooleate-based nanoparticles on the round window membrane permeability and cochlear distribution 

  35. Chen vol. 28 1022 2008 

  36. Int. J. Nanomedicine Bozzuto 10 975 2015 10.2147/IJN.S68861 Liposomes as nanomedical devices 

  37. Annu. Rev. Med. Wang 63 185 2012 10.1146/annurev-med-040210-162544 Nanoparticle delivery of cancer drugs 

  38. Int. J. Nanomedicine Ranjan 7 3475 2012 Peptide-mediated targeting of liposomes to TrkB receptor-expressing cells 

  39. Otol. Neurotol. Zou 33 666 2012 10.1097/MAO.0b013e318254590e Size-dependent passage of liposome nanocarriers with preserved posttransport integrity across the middle-inner ear barriers in rats 

  40. J. Nanobiotechnol. Zou 8 32 2010 10.1186/1477-3155-8-32 Manufacturing and in vivo inner ear visualization of MRI traceable liposome nanoparticles encapsulating gadolinium 

  41. Eur. J. Pharm. Biopharm. Letchford 65 259 2007 10.1016/j.ejpb.2006.11.009 A review of the formation and classification of amphiphilic block copolymer nanoparticulate structures: micelles, nanospheres, nanocapsules and polymersomes 

  42. Adv. Drug Deliv. Rev. Farokhzad 58 1456 2006 10.1016/j.addr.2006.09.011 Nanomedicine: developing smarter therapeutic and diagnostic modalities 

  43. Langmuir Lin 22 3975 2006 10.1021/la052445c Adhesion of antibody-functionalized polymersomes 

  44. Int. J. Pharm. Roy 390 214 2010 10.1016/j.ijpharm.2010.02.003 Cell-specific targeting in the mouse inner ear using nanoparticles conjugated with a neurotrophin-derived peptide ligand: potential tool for drug delivery 

  45. Drug Deliv. Kim 22 367 2015 10.3109/10717544.2013.879354 Development of a drug delivery system for the inner ear using poly(amino acid)-based nanoparticles 

  46. Biomaterials Yoon 73 243 2015 10.1016/j.biomaterials.2015.09.025 Intratympanic delivery of oligoarginine-conjugated nanoparticles as a gene (or drug) carrier to the inner ear 

  47. Colloids Surf. B Biointerfaces Kumari 75 1 2010 10.1016/j.colsurfb.2009.09.001 Biodegradable polymeric nanoparticles based drug delivery systems 

  48. J. Control Release Danhier 161 505 2012 10.1016/j.jconrel.2012.01.043 PLGA-based nanoparticles: an overview of biomedical applications 

  49. Curr. Drug Metab. Grottkau 14 840 2013 10.2174/138920021131400105 Polymeric nanoparticles for a drug delivery system 

  50. Int. J. Nanomedicine Cai 9 5591 2014 10.2147/IJN.S72555 Enhanced local bioavailability of single or compound drugs delivery to the inner ear through application of PLGA nanoparticles via round window administration 

  51. Nanomedicine (Lond) Pritz 8 1155 2013 10.2217/nnm.13.104 Nanomedicine strategies for drug delivery to the ear 

  52. Nanoscale Res. Lett. Le 8 58 2013 10.1186/1556-276X-8-58 Synthesis of silica nanoparticles from Vietnamese rice husk by sol-gel method 

  53. Int. J. Pharm. Sameti 266 51 2003 10.1016/S0378-5173(03)00380-6 Stabilisation by freeze-drying of cationically modified silica nanoparticles for gene delivery 

  54. Int. J. Pharm. Ahola 181 181 1999 10.1016/S0378-5173(99)00022-8 In vitro evaluation of biodegradable epsilon-caprolactone-co-D, L-lactide/silica xerogel composites containing toremifene citrate 

  55. Acta Otolaryngol. Praetorius 127 486 2007 10.1080/00016480600895102 Transsynaptic delivery of nanoparticles to the central auditory nervous system 

  56. Adv. Drug Deliv. Rev. Sun 60 1252 2008 10.1016/j.addr.2008.03.018 Magnetic nanoparticles in MR imaging and drug delivery 

  57. Cao vol. 23 1105 2004 

  58. Contrast Media Mol. Imaging Ye 7 460 2012 10.1002/cmmi.1473 Uniform mesoporous silica coated iron oxide nanoparticles as a highly efficient, nontoxic MRI T(2) contrast agent with tunable proton relaxivities 

  59. Audiol. Neurootol Kopke 11 123 2006 10.1159/000090685 Magnetic nanoparticles: inner ear targeted molecule delivery and middle ear implant 

  60. Otolaryngol. Head. Neck Surg. Ge 137 619 2007 10.1016/j.otohns.2007.04.013 Distribution of PLGA nanoparticles in chinchilla cochleae 

  61. J. Nanobiotechnol. Mondalek 4 4 2006 10.1186/1477-3155-4-4 The permeability of SPION over an artificial three-layer membrane is enhanced by external magnetic field 

  62. Biomagn. Res. Technol. Barnes 5 1 2007 10.1186/1477-044X-5-1 Magnetic characterization of superparamagnetic nanoparticles pulled through model membranes 

  63. Nanomedicine (Lond) Zou 5 739 2010 10.2217/nnm.10.45 MRI manifestation of novel superparamagnetic iron oxide nanoparticles in the rat inner ear 

  64. J. Biomed. Nanotechnol. Dormer Kea 4 10 2008 Magnetically-targeted, technetium 99m-labeled nanoparticles to the inner ear 

  65. Otol. Neurotol. Du 34 41 2013 10.1097/MAO.0b013e318277a40e Magnetic targeted delivery of dexamethasone acetate across the round window membrane in guinea pigs 

  66. Nanomedicine (Lond) Roy 7 55 2012 10.2217/nnm.11.84 Strategies for drug delivery to the human inner ear by multifunctional nanoparticles 

  67. Nanomedicine (Lond) Zou 9 2143 2014 10.2217/nnm.13.181 Pathway and morphological transformation of liposome nanocarriers after release from a novel sustained inner-ear delivery system 

  68. Chemistry Wu 19 11672 2013 10.1002/chem.201300494 Fluorescent hydroxylamine derived from the fragmentation of PAMAM dendrimers for intracellular hypochlorite recognition 

  69. Int. J. Nanotechnol. Moss 5 1 2008 10.1504/IJNT.2008.016547 Insights into the healthy effects of nanoparticles: why numbers matter 

  70. Otolaryngol. Head. Neck Surg. Sheppard 131 890 2004 10.1016/j.otohns.2004.05.021 Direct round window application of gentamicin with varying delivery vehicles: a comparison of ototoxicity 

  71. J. Control Release El Kechai 226 248 2016 10.1016/j.jconrel.2016.02.013 Hyaluronic acid liposomal gel sustains delivery of a corticoid to the inner ear 

  72. Nanomedicine Thaler 7 360 2011 10.1016/j.nano.2010.11.005 Visualization and analysis of superparamagnetic iron oxide nanoparticles in the inner ear by light microscopy and energy filtered TEM 

  73. Otol. Neurotol. Lajud 36 341 2015 10.1097/MAO.0000000000000445 A novel chitosan-hydrogel-based nanoparticle delivery system for local inner ear application 

  74. Audiol. Neurootol Wang 14 393 2009 10.1159/000241896 Dose-dependent sustained release of dexamethasone in inner ear cochlear fluids using a novel local delivery approach 

  75. Audiol. Neurootol Salt 14 350 2009 10.1159/000241892 Principles of local drug delivery to the inner ear 

  76. J. Biomed. Mater Res. B Appl. Biomater. Astolfi 102 267 2014 10.1002/jbm.b.33004 Cochlear implants and drug delivery: in vitro evaluation of dexamethasone release 

관련 콘텐츠

오픈액세스(OA) 유형

GREEN

저자가 공개 리포지터리에 출판본, post-print, 또는 pre-print를 셀프 아카이빙 하여 자유로운 이용이 가능한 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로