$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Nanogenerators for Human Body Energy Harvesting 원문보기

Trends in biotechnology, v.35 no.7, 2017년, pp.610 - 624  

Proto, Antonino (University of Roma Tre, Department of Engineering, Via Vito Volterra, 62, Rome 00146, Italy) ,  Penhaker, Marek (VSB-Technical University of Ostrava, Department of Cybernetics and Biomedical Engineering, 17. Listopadu 15, Ostrava-Poruba 70833, Czech Republic) ,  Conforto, Silvia (University of Roma Tre, Department of Engineering, Via Vito Volterra, 62, Rome 00146, Italy) ,  Schmid, Maurizio (University of Roma Tre, Department of Engineering, Via Vito Volterra, 62, Rome 00146, Italy)

Abstract AI-Helper 아이콘AI-Helper

Humans generate remarkable quantities of energy while performing daily activities, but this energy usually dissipates into the environment. Here, we address recent progress in the development of nanogenerators (NGs): devices that are able to harvest such body-produced biomechanical and thermal energ...

주제어

참고문헌 (92)

  1. IEEE Pervasive Comput. Paradiso 4 18 2005 10.1109/MPRV.2005.9 Energy scavenging for mobile and wireless electronics 

  2. Renew. Energy Harb 36 2641 2011 10.1016/j.renene.2010.06.014 Energy harvesting: state-of-the-art 

  3. IBM Syst. J. Starner 35 618 1996 10.1147/sj.353.0618 Human-powered wearable computing 

  4. Sensors Zhu 15 3721 2015 10.3390/s150203721 Wearable sensor systems for infants 

  5. J. Am. Geriatr. Soc. Kang 58 1579 2010 10.1111/j.1532-5415.2010.02959.x In situ monitoring of health in older adults: technologies and issues 

  6. Campagnolo 23 2012 Energy Autonomous Micro and Nano Systems Toward energy autonomous medical implants 

  7. Solid State Electron. Vullers 53 684 2009 10.1016/j.sse.2008.12.011 Micropower energy harvesting 

  8. Trends Biotechnol. Wang 34 909 2016 10.1016/j.tibtech.2016.05.009 Flexible substrate-based devices for point-of-care diagnostics 

  9. Eur. J. Phys. Rehabil. Med. Negrini 50 601 2014 Current research funding methods dumb down health care and rehabilitation for disabled people and aging population: a call for a change 

  10. IEEE Eng. Med. Biol. Mag. Bonato 29 25 2010 10.1109/MEMB.2010.936554 Wearable sensors and systems from enabling technology to clinical applications 

  11. Trends Biotechnol. Bettinger 33 575 2015 10.1016/j.tibtech.2015.07.008 Materials advances for next-generation ingestible electronic medical devices 

  12. Conf. Proc. IEEE Eng. Med. Biol. Soc. Mitcheson 2010 3432 2010 Energy harvesting for human wearable and implantable bio-sensors 

  13. IEEE Sens. J. Leonov 13 2284 2013 10.1109/JSEN.2013.2252526 Thermoelectric energy harvesting of human body heat for wearable sensors 

  14. J. Neuroeng. Rehabil. Riemer 8 22 2011 10.1186/1743-0003-8-22 Biomechanical energy harvesting from human motion: theory, state of the art, design guidelines, and future directions 

  15. Science Wang 312 242 2006 10.1126/science.1124005 Piezoelectric nanogenerators based on zinc oxide nanowire arrays 

  16. Nano Energy Li 34 93 2017 10.1016/j.nanoen.2017.02.020 Evolutionary trend analysis of nanogenerator research based on a novel perspective of phased bibliographic couplings 

  17. Nat. Nanotechnol. Yang 4 34 2009 10.1038/nnano.2008.314 Power generation with laterally packaged piezoelectric fine wires 

  18. Nano Lett. Yang 9 1201 2009 10.1021/nl803904b Converting biomechanical energy into electricity by a muscle-movement-driven nanogenerator 

  19. Adv. Funct. Mater. Lee 24 1163 2014 10.1002/adfm.201301971 Ultrathin nanogenerators as self-powered/active skin sensors for tracking eye ball motion 

  20. Adv. Funct. Mater. Lee 23 2445 2013 10.1002/adfm.201202867 Super-flexible nanogenerator for energy harvesting from gentle wind and as an active deformation sensor 

  21. ACS Appl. Mater. Interfaces Saravanakumar 6 13716 2014 10.1021/am5031648 Self-powered pH sensor based on a flexible organic-inorganic hybrid composite nanogenerator 

  22. Adv. Mater. Chung 24 6022 2012 10.1002/adma.201202708 All-solution-processed flexible thin film piezoelectric nanogenerator 

  23. Nano Lett. Pradel 14 6897 2014 10.1021/nl5029182 Solution-derived ZnO homojunction nanowire films on wearable substrates for energy conversion and self-powered gesture recognition 

  24. Nat. Commun. Persano 4 1633 2013 10.1038/ncomms2639 High performance piezoelectric devices based on aligned arrays of nanofibers of poly(vinylidenefluoride-co-trifluoroethylene) 

  25. ACS Appl. Mater. Interfaces Park 8 24773 2016 10.1021/acsami.6b07833 Flexible and stretchable piezoelectric sensor with thickness-tunable configuration of electrospun nanofiber mat and elastomeric substrates 

  26. Nano Energy Fuh 11 671 2015 10.1016/j.nanoen.2014.10.038 Self-powered sensing elements based on direct-write, highly flexible piezoelectric polymeric nano/microfibers 

  27. Nano Energy Jung 13 174 2015 10.1016/j.nanoen.2015.01.051 Powerful curved piezoelectric generator for wearable applications 

  28. Microelectron. Eng. Guido 159 174 2016 10.1016/j.mee.2016.03.041 AlN-based flexible piezoelectric skin for energy harvesting from human motion 

  29. ACS Nano Shin 8 2766 2014 10.1021/nn406481k Hemispherically aggregated BaTiO3 nanoparticle composite thin film for high-performance flexible piezoelectric nanogenerator 

  30. Adv. Mater. Park 26 2514 2014 10.1002/adma.201305659 Highly-efficient, flexible piezoelectric PZT thin film nanogenerator on plastic substrates 

  31. Energy Environ. Sci. Jeong 7 4035 2014 10.1039/C4EE02435D Self-powered fully-flexible light-emitting system enabled by flexible energy harvester 

  32. Adv. Energy Mater. Hwang 6 1600237 2016 10.1002/aenm.201600237 Self-powered wireless sensor node enabled by an aerosol-deposited PZT flexible energy harvester 

  33. Adv. Mater. Jeong 27 2866 2015 10.1002/adma.201500367 A hyper-stretchable elastic-composite energy harvester 

  34. Energy Environ. Sci. Zeng 6 2631 2013 10.1039/c3ee41063c Highly durable all-fiber nanogenerator for mechanical energy harvesting 

  35. Adv. Mater. Lee 24 1759 2012 10.1002/adma.201200150 A hybrid piezoelectric structure for wearable nanogenerators 

  36. Energy Environ. Sci. Soin 7 1670 2014 10.1039/C3EE43987A Novel “3-D spacer” all fibre piezoelectric textiles for energy harvesting applications 

  37. Nano Energy Zhang 13 298 2015 10.1016/j.nanoen.2015.02.034 A hybrid fibers based wearable fabric piezoelectric nanogenerator for energy harvesting application 

  38. ACS Nano Yang 7 11317 2013 10.1021/nn405175z Harvesting energy from the natural vibration of human walking 

  39. ACS Nano Bai 7 3713 2013 10.1021/nn4007708 Integrated multi layered triboelectric nanogenerator for harvesting biomechanical energy from human motions 

  40. ACS Appl. Mater. Interfaces Kang 7 20469 2015 10.1021/acsami.5b06675 Folded elastic strip-based triboelectric nanogenerator for harvesting human motion energy for multiple applications 

  41. Nat. Commun. Niu 6 8975 2015 10.1038/ncomms9975 A universal self-charging system driven by random biomechanical energy for sustainable operation of mobile electronics 

  42. ACS Nano Song 10 8097 2016 10.1021/acsnano.6b04344 Nanopillar arrayed triboelectric nanogenerator as a self-powered sensitive sensor for a sleep monitoring system 

  43. Adv. Mater. Yang 27 3817 2015 10.1002/adma.201500652 A flexible, stretchable and shape-adaptive approach for versatile energy conversion and self-powered biomedical monitoring 

  44. Nano Energy Meng 2 1101 2013 10.1016/j.nanoen.2013.08.006 Self-powered flexible printed circuit board with integrated triboelectric generator 

  45. Nano Lett. Zhang 13 1168 2013 10.1021/nl3045684 Frequency-multiplication high-output triboelectric nanogenerator for sustainably powering biomedical microsystems 

  46. Nano Energy Hou 2 856 2013 10.1016/j.nanoen.2013.03.001 Triboelectric nanogenerator built inside shoe insole for harvesting walking energy 

  47. ACS Nano Hwang 9 8801 2015 10.1021/acsnano.5b01835 Transparent stretchable self-powered patchable sensor platform with ultrasensitive recognition of human activities 

  48. ACS Nano Yang 7 9213 2013 10.1021/nn403838y Human skin based triboelectric nanogenerators for harvesting biomechanical energy and as self-powered active tactile sensor system 

  49. ACS Appl. Mater. Interfaces Yang 6 7479 2014 10.1021/am500864t Triboelectrification based motion sensor for human-machine interfacing 

  50. Appl. Phys. Lett. Meng 104 103904 2014 10.1063/1.4868130 Single-friction-surface triboelectric generator with human body conduit 

  51. Rasel 1949 2015 2015 18th International Conference on Solid-State Sensors, Actuators and Microsystems (Transducers) A wrist-band coupled, human skin based triboelectric generator for harvesting biomechanical energy 

  52. Dhakar 106 2015 28th IEEE International Conference on Micro Electro Mechanical Systems (MEMS) Skin based flexible triboelectric nanogenerators with motion sensing Capability 

  53. Nano Energy Dhakar 19 532 2016 10.1016/j.nanoen.2015.04.020 An intelligent skin based self-powered finger motion sensor integrated with triboelectric nanogenerator 

  54. ACS Nano Shi 10 4083 2016 10.1021/acsnano.5b07074 Self-powered analogue smart skin 

  55. Nano Energy Sun 32 180 2017 10.1016/j.nanoen.2016.12.032 A leaf-molded transparent triboelectric nanogenerator for smart multifunctional applications 

  56. ACS Nano Guo 10 10580 2016 10.1021/acsnano.6b06621 All-in-one shape-adaptive self-charging power package for wearable electronics 

  57. Adv. Mater. Lai 28 10024 2016 10.1002/adma.201603527 Electric eel-skin-inspired mechanically durable and super-stretchable nanogenerator for deformable power source and fully autonomous conformable electronic-skin applications 

  58. Adv. Funct. Mater. Yi 25 3688 2015 10.1002/adfm.201500428 Stretchable-rubber-based triboelectric nanogenerator and its application as self-powered body motion sensors 

  59. Nano Energy Chu 27 298 2016 10.1016/j.nanoen.2016.07.009 Conformal, graphene-based triboelectric nanogenerator for self-powered wearable electronics 

  60. Adv. Mater. Yang 27 1316 2015 10.1002/adma.201404794 Eardrum-inspired active sensors for self-powered cardiovascular system characterization and throat-attached anti-interference voice recognition 

  61. Adv. Energy Mater. Chen 7 1601255 2017 10.1002/aenm.201601255 An ultrathin flexible single-electrode triboelectric-nanogenerator for mechanical energy harvesting and instantaneous force sensing 

  62. ACS Appl. Mater. Interfaces Chandrasekhar 8 9692 2016 10.1021/acsami.6b00548 Human interactive triboelectric nanogenerator as a self-powered smart seat 

  63. Nano Energy Zhang 2 1019 2013 10.1016/j.nanoen.2013.03.024 Triboelectric nanogenerator built inside clothes for self-powered glucose biosensors 

  64. Nano Energy Lee 12 410 2015 10.1016/j.nanoen.2015.01.009 Triboelectric energy harvester based on wearable textile platforms employing various surface morphologies 

  65. ACS Nano Seung 9 3501 2015 10.1021/nn507221f Nanopatterned textile-based wearable triboelectric nanogenerator 

  66. ACS Appl. Mater. Interfaces Guo 8 4676 2016 10.1021/acsami.5b11622 Fluoroalkylsilane-modified textile-based personal energy management device for multifunctional wearable applications 

  67. ACS Nano Zhong 8 6273 2014 10.1021/nn501732z Fiber-based generator for wearable electronics and mobile medication 

  68. Adv. Mater. Pu 27 2472 2015 10.1002/adma.201500311 A self-charging power unit by integration of a textile triboelectric nanogenerator and a flexible lithium-ion battery for wearable electronics 

  69. Adv. Mater. Pu 28 98 2016 10.1002/adma.201504403 Wearable self-charging power textile based on flexible yarn supercapacitors and fabric nanogenerators 

  70. Adv. Funct. Mater. He 27 1604378 2017 10.1002/adfm.201604378 A highly stretchable fiber-based triboelectric nanogenerator for self-powered wearable electronics 

  71. Adv. Mater. Jung 26 6329 2014 10.1002/adma.201402439 Fabric-based integrated energy devices for wearable activity monitors 

  72. ACS Appl. Mater. Interfaces Li 7 14912 2015 10.1021/acsami.5b03680 Cloth-based power shirt for wearable energy harvesting and clothes ornamentation 

  73. ACS Appl. Mater. Interfaces Zhou 6 14695 2014 10.1021/am504110u Woven structured triboelectric nanogenerator for wearable devices 

  74. Energy Francioso 86 300 2015 10.1016/j.energy.2015.04.041 Experimental assessment of thermoelectric generator package properties: simulated results validation and real gradient capabilities 

  75. Francioso 104 2013 2013 5th IEEE International Workshop on Advances in Sensors and Interfaces Thin film technology flexible thermoelectric generator and dedicated ASIC for energy harvesting applications 

  76. ACS Appl. Mater. Interfaces Francioso 5 6586 2013 10.1021/am401222p PDMS/Kapton interface plasma treatment effects on the polymeric package for a wearable thermoelectric generator 

  77. Energy We 73 506 2014 10.1016/j.energy.2014.06.047 Hybrid composite of screen-printed inorganic thermoelectric film and organic conducting polymer for flexible thermoelectric power generator 

  78. Appl. Energy Hyland 182 518 2016 10.1016/j.apenergy.2016.08.150 Wearable thermoelectric generators for human body heat harvesting 

  79. Appl. Energy Lu 164 57 2016 10.1016/j.apenergy.2015.11.038 Silk fabric-based wearable thermoelectric generator for energy harvesting from the human body 

  80. Smart Mater. Struct. Kim 23 105002 2014 10.1088/0964-1726/23/10/105002 Wearable thermoelectric generator for harvesting human body heat energy 

  81. Energy Siddique 115 1081 2016 10.1016/j.energy.2016.09.087 Thermal energy harvesting from the human body using flexible thermoelectric generator (FTEG) fabricated by a dispenser printing technique 

  82. Adv. Mater. Hecht 23 1482 2011 10.1002/adma.201003188 Emerging transparent electrodes based on thin films of carbon nanotubes, graphene, and metallic nanostructures 

  83. J. Electrostat. Diaz 62 277 2004 10.1016/j.elstat.2004.05.005 A semi-quantitative tribo-electric series for polymeric materials: the influence of chemical structure and properties 

  84. Adv. Mater. Lee 27 5553 2015 10.1002/adma.201502463 Control of skin potential by triboelectrification with ferroelectric polymers 

  85. Electron. Lett. Jo 48 1015 2012 10.1049/el.2012.1566 Flexible thermoelectric generator for human body heat energy harvesting 

  86. ACS Nano Jung 5 10041 2011 10.1021/nn2039033 Lead-free NaNbO3 nanowires for a high output piezoelectric nanogenerator 

  87. J. Mater. Chem. A Liu 4 6077 2016 10.1039/C6TA01166G A triboelectric textile templated by a three-dimensionally penetrated fabric 

  88. Adv. Mater. Zhao 28 10267 2016 10.1002/adma.201603679 Machine-washable textile triboelectric nanogenerators for effective human respiratory monitoring through loom weaving of metallic yarns 

  89. Sci. Rep. Du 5 6411 2015 10.1038/srep06411 Thermoelectric fabrics: toward power generating clothing 

  90. Trends Biotechnol. Bandodkar 32 363 2014 10.1016/j.tibtech.2014.04.005 Non-invasive wearable electrochemical sensors: a review 

  91. Trends Biotechnol. Preechaburana 32 351 2014 10.1016/j.tibtech.2014.03.007 Biosensing with cell phones 

  92. Trends Biotechnol. Kim 31 23 2013 10.1016/j.tibtech.2013.03.002 Soft robotics: a bioinspired evolution in robotics 

관련 콘텐츠

오픈액세스(OA) 유형

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로