$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Cam-based sustainable triboelectric nanogenerators with a resolution-free 3D-printed system

Nano energy, v.38, 2017년, pp.326 - 334  

Lee, Younghoon (Department of Mechanical Engineering, Kyung Hee University, Yongin 17104, South Korea) ,  Kim, Wook (Department of Mechanical Engineering, Kyung Hee University, Yongin 17104, South Korea) ,  Bhatia, Divij (Department of Mechanical Engineering, Kyung Hee University, Yongin 17104, South Korea) ,  Hwang, Hee Jae (Department of Mechanical Engineering, Kyung Hee University, Yongin 17104, South Korea) ,  Lee, Sangmin (Department of Mechanical Engineering, Chung-Ang University, Seoul 06974, South Korea) ,  Choi, Dukhyun (Department of Mechanical Engineering, Kyung Hee University, Yongin 17104, South Korea)

Abstract AI-Helper 아이콘AI-Helper

Abundant rotating energies in our environment could be utilized to produce electrical power by using mechanical energy harvesters; however, rotating scavengers are limited by their low lifetimes and high costs due to the severe friction between operating materials and the necessity of precise system...

주제어

참고문헌 (47)

  1. Science Lubchenco 279 491 1998 10.1126/science.279.5350.491 Entering the century of the environment: a new social contract for science 

  2. Renew. Sustain. Energy Rev. Asif 11 1388 2007 10.1016/j.rser.2005.12.004 Energy supply, its demand and security issues for developed and emerging economies 

  3. Energy Policy Höök 52 797 2013 10.1016/j.enpol.2012.10.046 Depletion of fossil fuels and anthropogenic climate change-A review 

  4. Nature Dresselhaus 414 332 2001 10.1038/35104599 Alternative energy technologies 

  5. Computer Brewer 38 25 2005 10.1109/MC.2005.204 The case for technology in developing regions 

  6. Angew. Chem. Int. Ed. Armaroli 46 52 2007 10.1002/anie.200602373 The future of energy supply: challenges and opportunities 

  7. Sci. Rep. Choi 7 2017 Corrugated textile based triboelectric generator for wearable energy harvesting 

  8. Adv. Energy Mater. Cao 2016 10.1002/aenm.201600665 Triboelectric nanogenerators driven self‐powered electrochemical processes for energy and environmental science 

  9. Nano Energy Lee 9 88 2014 10.1016/j.nanoen.2014.06.017 Stitchable organic photovoltaic cells with textile electrodes 

  10. ACS Nano Kim 10 10851 2016 10.1021/acsnano.6b05004 High-performance flexible thermoelectric power generator using laser multiscanning lift-off process 

  11. Adv. Mater. Jeong 27 2866 2015 10.1002/adma.201500367 A hyper‐stretchable elastic‐composite energy harvester 

  12. Adv. Energy Mater. Guo 2015 A water‐proof triboelectric-electromagnetic hybrid generator for energy harvesting in harsh environments 

  13. IEEE J. Sel. Areas Commun. Rodoplu 17 1333 1999 10.1109/49.779917 Minimum energy mobile wireless networks 

  14. Adv. Mater. Fan 2016 10.1002/adma.201504299 Flexible nanogenerators for energy harvesting and self‐powered electronics 

  15. IEEE Pervasive Comput. Paradiso 4 18 2005 10.1109/MPRV.2005.9 Energy scavenging for mobile and wireless electronics 

  16. J. Sound Vib. Shahruz 292 987 2006 10.1016/j.jsv.2005.08.018 Design of mechanical band-pass filters for energy scavenging 

  17. Nature Chu 488 294 2012 10.1038/nature11475 Opportunities and challenges for a sustainable energy future 

  18. Proc. IEEE Misra 103 665 2015 10.1109/JPROC.2015.2412493 Flexible technologies for self-powered wearable health and environmental sensing 

  19. Adv. Energy Mater. Yang 3 1563 2013 10.1002/aenm.201300376 Fully enclosed triboelectric nanogenerators for applications in water and harsh environments 

  20. ACS Nano Bai 7 3713 2013 10.1021/nn4007708 Integrated multilayered triboelectric nanogenerator for harvesting biomechanical energy from human motions 

  21. Sci. Rep. Sim 6 2016 10.1038/srep35153 Stretchable triboelectric fiber for self-powered kinematic sensing textile 

  22. Sci. Rep. Gupta 7 2017 Broadband energy harvester using non-linear polymer spring and electromagnetic/triboelectric hybrid mechanism 

  23. Nano Energy Kim 27 340 2016 10.1016/j.nanoen.2016.06.051 Design and optimization of rotating triboelectric nanogenerator by water electrification and inertia 

  24. Adv. Mater. Li 22 2534 2010 10.1002/adma.200904355 Muscle‐driven in vivo nanogenerator 

  25. Energy Environ. Sci. Niu 6 3576 2013 10.1039/c3ee42571a Theoretical study of contact-mode triboelectric nanogenerators as an effective power source 

  26. Nano Energy Park 21 258 2016 10.1016/j.nanoen.2016.01.021 Triboelectric nanogenerator with nanostructured metal surface using water-assisted oxidation 

  27. Faraday Discuss. Wang 176 447 2015 10.1039/C4FD00159A Triboelectric nanogenerators as new energy technology and self-powered sensors-principles, problems and perspectives 

  28. ACS Nano Yang 6 10378 2012 10.1021/nn304374m Self-powered magnetic sensor based on a triboelectric nanogenerator 

  29. ACS Nano Yang 7 9213 2013 10.1021/nn403838y Human skin based triboelectric nanogenerators for harvesting biomechanical energy and as self-powered active tactile sensor system 

  30. Nano Lett. Zhu 13 847 2013 10.1021/nl4001053 Toward large-scale energy harvesting by a nanoparticle-enhanced triboelectric nanogenerator 

  31. Adv. Mater. Niu 25 6184 2013 10.1002/adma.201302808 Theory of sliding‐mode triboelectric nanogenerators 

  32. Nano Energy Fan 1 328 2012 10.1016/j.nanoen.2012.01.004 Flexible triboelectric generator 

  33. Adv. Energy Mater. Zheng 5 2015 10.1002/aenm.201501152 A hybridized power panel to simultaneously generate electricity from sunlight, raindrops, and wind around the clock 

  34. Nano Energy Zheng 9 291 2014 10.1016/j.nanoen.2014.07.024 Silicon-based hybrid cell for harvesting solar energy and raindrop electrostatic energy 

  35. Nano Energy Wang 11 436 2015 10.1016/j.nanoen.2014.10.034 Triboelectric nanogenerators as self-powered active sensors 

  36. Nano Res. Han 8 722 2015 10.1007/s12274-014-0555-3 High power triboelectric nanogenerator based on printed circuit board (PCB) technology 

  37. Nano Energy Kim 21 19 2016 10.1016/j.nanoen.2015.12.017 Kinematic design for high performance triboelectric nanogenerators with enhanced working frequency 

  38. Adv. Mater. Wang 26 2818 2014 10.1002/adma.201305303 Freestanding triboelectric‐layer‐based nanogenerators for harvesting energy from a moving object or human motion in contact and non‐contact modes 

  39. Acs Nano Xie 7 7119 2013 10.1021/nn402477h Rotary triboelectric nanogenerator based on a hybridized mechanism for harvesting wind energy 

  40. Adv. Energy Mater. Zhang 4 2014 10.1002/aenm.201301798 Rotating‐disk‐based direct‐current triboelectric nanogenerator 

  41. ACS Nano Zhang 10 6241 2016 10.1021/acsnano.6b02384 Rotating-disk-based hybridized electromagnetic-triboelectric nanogenerator for sustainably powering wireless traffic volume sensors 

  42. Adv. Energy Mater. Quan 6 2016 10.1002/aenm.201501799 Robust thin films‐based triboelectric nanogenerator arrays for harvesting bidirectional wind energy 

  43. J. Biomech. Gédet 40 1881 2007 10.1016/j.jbiomech.2006.07.024 Minimizing errors during in vitro testing of multisegmental spine specimens: considerations for component selection and kinematic measurement 

  44. Nano Energy Lee 2 1113 2013 10.1016/j.nanoen.2013.08.007 Triboelectric nanogenerator for harvesting pendulum oscillation energy 

  45. Nano Lett. Wang 12 6339 2012 10.1021/nl303573d Nanoscale triboelectric-effect-enabled energy conversion for sustainably powering portable electronics 

  46. J. Appl. Polym. Sci. Mathew 97 2014 2005 10.1002/app.21779 Mechanical properties of biodegradable composites from poly lactic acid (PLA) and microcrystalline cellulose (MCC) 

  47. Prog. Polym. Sci. Yu 31 576 2006 10.1016/j.progpolymsci.2006.03.002 Polymer blends and composites from renewable resources 

LOADING...

관련 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로