$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Low-frequency, broadband vibration energy harvester using coupled oscillators and frequency up-conversion by mechanical stoppers

Smart materials & structures, v.26 no.6, 2017년, pp.065021 -   

Dechant, Eduard (East Bavarian Centre for Intelligent Materials (EBACIM), Ostbayerische Technische Hochschule Regensburg, D-93053 Regensburg, Germany) ,  Fedulov, Feodor (Moscow Technological University (MIREA), 119454 Moscow, Russia) ,  Chashin, Dmitrii V (Moscow Technological University (MIREA), 119454 Moscow, Russia) ,  Fetisov, Leonid Y (Moscow Technological University (MIREA), 119454 Moscow, Russia) ,  Fetisov, Yuri K (Moscow Technological University (MIREA), 119454 Moscow, Russia) ,  Shamonin, Mikhail (East Bavarian Centre for Intelligent Materials (EBACIM), Ostbayerische Technische Hochschule Regensburg, D-93053 Regensburg, Germany)

Abstract AI-Helper 아이콘AI-Helper

The frequencies of ambient vibrations are often low (below 30 Hz). A broadband (3 dB bandwidth is larger than 10 Hz at an acceleration amplitude of 9.81 m s−2) vibration based energy harvester is proposed for transducing mechanical energy at such low frequencies into electrical energy. The mec...

참고문헌 (46)

  1. [1] Priya S and Inman D 2009 Energy Harvesting Technologies (New York: Springer) 10.1007/978-0-387-76464-1 Priya S and Inman D Energy Harvesting Technologies 2009 

  2. [2] Erturk A and Inman D 2011 Piezoelectric Energy Harvesting (Chichester: Wiley) 10.1002/9781119991151 Erturk A and Inman D Piezoelectric Energy Harvesting 2011 

  3. [3] Al-Ashtari W, Hunstig M, Hemsel T and Sextro W 2013 Enhanced energy harvesting using multiple piezoelectric elements: theory and experiments Sensors Actuators A 200 138–46 10.1016/j.sna.2013.01.008 Enhanced energy harvesting using multiple piezoelectric elements: theory and experiments Al-Ashtari W, Hunstig M, Hemsel T and Sextro W Sensors Actuators 0924-4247 200 A 2013 138 146 

  4. [4] Briand D, Yeatman E and Roundy S (ed) 2015 Micro Energy Harvesting (New York: Wiley-VCH) 10.1002/9783527672943 Briand D, Yeatman E and Roundy S (ed) Micro Energy Harvesting 1865-3715 2015 

  5. [5] Mitcheson P, Green T, Yeatman E and Holmes A 2004 Architectures for vibration-driven micropower generators J. Microelectromech. Syst. 13 429–40 10.1109/JMEMS.2004.830151 Architectures for vibration-driven micropower generators Mitcheson P, Green T, Yeatman E and Holmes A J. Microelectromech. Syst. 1057-7157 13 2004 429 440 

  6. [6] Mitcheson P, Yeatman E, Rao G, Holmes A and Green T 2008 Energy harvesting from human and machine motion for wireless electronic devices Proc. IEEE 96 1457–86 10.1109/JPROC.2008.927494 Energy harvesting from human and machine motion for wireless electronic devices Mitcheson P, Yeatman E, Rao G, Holmes A and Green T Proc. IEEE 0018-9219 96 2008 1457 1486 

  7. [7] Chamanian S, Baghaee S, Ulusan H, Zorlu O, Kulah H and Uysal-Biyikoglu E 2014 Powering up wireless sensor nodes utilizing rechargeable batteries and an electromagnetic vibration energy harvesting system Energies 7 6323–39 10.3390/en7106323 Powering up wireless sensor nodes utilizing rechargeable batteries and an electromagnetic vibration energy harvesting system Chamanian S, Baghaee S, Ulusan H, Zorlu O, Kulah H and Uysal-Biyikoglu E Energies 7 2014 6323 6339 

  8. [8] Li H, Tian C and Deng Z D 2014 Energy harvesting from low frequency applications using piezoelectric materials Appl. Phys. Rev. 1 041301 10.1063/1.4900845 Energy harvesting from low frequency applications using piezoelectric materials Li H, Tian C and Deng Z D Appl. Phys. Rev. 1 041301 2014 

  9. [9] Roundy S 2005 On the effectiveness of vibration-based energy harvesting J. Intell. Mater. Syst. Struct. 16 809–23 10.1177/1045389X05054042 On the effectiveness of vibration-based energy harvesting Roundy S J. Intell. Mater. Syst. Struct. 16 2005 809 823 

  10. [10] Bendame M, Abdel-Rahman E and Soliman M 2015 Electromagnetic impact vibration energy harvesters Structural Nonlinear Dynamics and Diagnosis (Springer Proceedings in Physics vol 168) ed M Belhaq (New York: Springer) pp 29–58 10.1007/978-3-319-19851-4_2 Electromagnetic impact vibration energy harvesters Bendame M, Abdel-Rahman E and Soliman M ed Belhaq M Structural Nonlinear Dynamics and Diagnosis 0930-8989 168 2015 29 58 

  11. [11] Priya S, Song H, Zhou Y, Chopra A, Kanno I and Ryu J 2017 A review on piezoelectric energy harvesting: materials, methods, and circuits Energy Harvesting and Systems 10.1515/ehs-2016-0028 A review on piezoelectric energy harvesting: materials, methods, and circuits Priya S, Song H, Zhou Y, Chopra A, Kanno I and Ryu J Energy Harvesting and Systems 2017 

  12. [12] Soliman M, Abdel-Rahman E, EI-Saadany E and Mansour R 2008 A wideband vibration-based energy harvester J. Micromech. Microeng. 18 115021 10.1088/0960-1317/18/11/115021 A wideband vibration-based energy harvester Soliman M, Abdel-Rahman E, EI-Saadany E and Mansour R J. Micromech. Microeng. 0960-1317 18 11 115021 2008 

  13. [13] Tang L, Yang Y and Soh K 2010 Toward broadband vibration-based energy harvesting J. Intell. Mater. Syst. Struct. 21 1867–95 10.1177/1045389X10390249 Toward broadband vibration-based energy harvesting Tang L, Yang Y and Soh K J. Intell. Mater. Syst. Struct. 21 2010 1867 1895 

  14. [14] Twiefel J and Westermann H 2013 Survey on broadband techniques for vibration energy harvesting J. Intell. Mater. Syst. Struct. 24 1291–302 10.1177/1045389X13476149 Survey on broadband techniques for vibration energy harvesting Twiefel J and Westermann H J. Intell. Mater. Syst. Struct. 24 2013 1291 1302 

  15. [15] Yang J, Wen Y, Li P, Yue X, Yu Q and Bai X 2013 A two-dimensional broadband vibration energy harvester using magnetoelectric transducer Appl. Phys. Lett. 103 243903 10.1063/1.4847755 A two-dimensional broadband vibration energy harvester using magnetoelectric transducer Yang J, Wen Y, Li P, Yue X, Yu Q and Bai X Appl. Phys. Lett. 103 243903 2013 

  16. [16] Lin Z, Chen J, Li X, Li J, Awais Q and Yang J 2016 Broadband and three-dimensional vibration energy harvesting by a nonlinear magnetoelectric generator Appl. Phys. Lett. 109 253903 10.1063/1.4972188 Broadband and three-dimensional vibration energy harvesting by a nonlinear magnetoelectric generator Lin Z, Chen J, Li X, Li J, Awais Q and Yang J Appl. Phys. Lett. 109 253903 2016 

  17. [17] Yang J, Chen J, Yang Y and Wang Z 2014 Broadband vibrational energy harvesting based on a triboelectric nanogenerator Adv. Energy Mater. 4 1301322 10.1002/aenm.201301322 Broadband vibrational energy harvesting based on a triboelectric nanogenerator Yang J, Chen J, Yang Y and Wang Z Adv. Energy Mater. 4 1301322 2014 

  18. [18] Caruso G 2015 Broadband energy harvesting from vibrations using magnetic transduction J. Vib. Acoust. 137 064503 10.1115/1.4031413 Broadband energy harvesting from vibrations using magnetic transduction Caruso G J. Vib. Acoust. 137 064503 2015 

  19. [19] Renno J M, Daqaq M F and Inman D J 2009 On the optimal energy harvesting from a vibration source J. Sound Vib. 320 386–405 10.1016/j.jsv.2008.07.029 On the optimal energy harvesting from a vibration source Renno J M, Daqaq M F and Inman D J J. Sound Vib. 320 2009 386 405 

  20. [20] Shahruz M 2006 Design of mechanical band-pass filters for energy scavenging J. Sound Vib. 292 987–98 10.1016/j.jsv.2005.08.018 Design of mechanical band-pass filters for energy scavenging Shahruz M J. Sound Vib. 292 2006 987 998 

  21. [21] Shahruz M 2006 Limits of performance of mechanical band-pass filters used in energy scavenging J. Sound Vib. 293 449–61 10.1016/j.jsv.2005.09.022 Limits of performance of mechanical band-pass filters used in energy scavenging Shahruz M J. Sound Vib. 293 2006 449 461 

  22. [22] Xue H, Hu Y and Wang Q-M 2008 Broadband piezoelectric energy harvesting devices using multiple bimorphs with different operating frequencies IEEE Trans. Ultrason. Ferroelectr. Freq. Control 55 2104–8 10.1109/TUFFC.903 Broadband piezoelectric energy harvesting devices using multiple bimorphs with different operating frequencies Xue H, Hu Y and Wang Q-M IEEE Trans. Ultrason. Ferroelectr. Freq. Control 55 2008 2104 2108 

  23. [23] Ferrari M, Ferarri V, Guizzetti M, Marioli D and Taroni A 2008 Piezoelectric multifrequency converter for power harvesting in autonomous microsystems Sensors Actuators A 142 329–35 10.1016/j.sna.2007.07.004 Piezoelectric multifrequency converter for power harvesting in autonomous microsystems Ferrari M, Ferarri V, Guizzetti M, Marioli D and Taroni A Sensors Actuators 0924-4247 142 A 2008 329 335 

  24. [24] Liu H, Tay C, Quan C, Kobayashi T and Lee C 2011 Piezoelectric MEMS energy harvester for low-frequency vibrations with wideband operation range and steadily increased output power J. Microelectromech. Syst. 20 1131–42 10.1109/JMEMS.2011.2162488 Piezoelectric MEMS energy harvester for low-frequency vibrations with wideband operation range and steadily increased output power Liu H, Tay C, Quan C, Kobayashi T and Lee C J. Microelectromech. Syst. 1057-7157 20 2011 1131 1142 

  25. [25] Roundy S 2005 Improving power output for vibration based energy scavengers IEEE Pervasive Comput. 4 28–36 10.1109/MPRV.2005.14 Improving power output for vibration based energy scavengers Roundy S IEEE Pervasive Comput. 4 2005 28 36 

  26. [26] Gu L and Livermore C 2011 Impact-driven, frequency up-converting coupled vibration energy harvesting device for low frequency operation Smart Mater. Struct. 20 045004 10.1088/0964-1726/20/4/045004 Impact-driven, frequency up-converting coupled vibration energy harvesting device for low frequency operation Gu L and Livermore C Smart Mater. Struct. 0964-1726 20 4 045004 2011 

  27. [27] Liu H, Lee C, Kobayashi T, Tay C and Quan C 2012 Investigation of a MEMS piezoelectric energy harvester system with a frequency-widened-bandwidth mechanism introduced by mechanical stoppers Smart Mater. Struct. 21 035005 10.1088/0964-1726/21/3/035005 Investigation of a MEMS piezoelectric energy harvester system with a frequency-widened-bandwidth mechanism introduced by mechanical stoppers Liu H, Lee C, Kobayashi T, Tay C and Quan C Smart Mater. Struct. 0964-1726 21 3 035005 2012 

  28. [28] Moss S, Barry A, Powlesland I, Galea S and Carman G 2011 A broadband vibro-impacting power harvester with symmetrical piezoelectric bimorph-stops Smart Mater. Struct. 20 045013 10.1088/0964-1726/20/4/045013 A broadband vibro-impacting power harvester with symmetrical piezoelectric bimorph-stops Moss S, Barry A, Powlesland I, Galea S and Carman G Smart Mater. Struct. 0964-1726 20 4 045013 2011 

  29. [29] Lee D-G, Carman G-P, Murphy D and Schulenburg C 2007 Novel microvibration energy harvesting device using frequency up conversion Proc. 14th Int. Conf. on Soli-State Sensors, Actuators and Microsystems (IEEE Transducer 07) pp 871–4 10.1109/SENSOR.2007.4300269 Novel microvibration energy harvesting device using frequency up conversion Lee D-G, Carman G-P, Murphy D and Schulenburg C Proc. 14th Int. Conf. on Soli-State Sensors, Actuators and Microsystems (IEEE Transducer 07) 2007 871 874 

  30. [30] Kulah I and Najafi K 2008 Energy scavenging from low-frequency vibrations by using freuquency up-conversion for wireless sensor applications IEEE Sens. J. 8 261–8 10.1109/JSEN.2008.917125 Energy scavenging from low-frequency vibrations by using freuquency up-conversion for wireless sensor applications Kulah I and Najafi K IEEE Sens. J. 1530-437X 8 2008 261 268 

  31. [31] Jung S and Yun K 2010 Energy-harvesting devics with mechanical frequency up-conversion mechanism for increasing power effeiciency and wideband operation Appl. Phys. Lett. 96 11906 10.1063/1.3360219 Energy-harvesting devics with mechanical frequency up-conversion mechanism for increasing power effeiciency and wideband operation Jung S and Yun K Appl. Phys. Lett. 96 11906 2010 

  32. [32] Umeda M and Sakai Y 2001 Piezoelectric generating apparatus Eur. Pat. Appl. EP 1 100 189 A1 Umeda M and Sakai Y 2001 

  33. [33] Liu S, Cheng Q, Zhao D and Feng L 2016 Theoretical modeling and analysis of two-degree-of-freedom piezoelectric energy harvester with stopper Sensors Actuators A 245 97–105 10.1016/j.sna.2016.04.060 Theoretical modeling and analysis of two-degree-of-freedom piezoelectric energy harvester with stopper Liu S, Cheng Q, Zhao D and Feng L Sensors Actuators 0924-4247 245 A 2016 97 105 

  34. [34] Xiao H, Wang X and John S 2016 A multi-degree of freedom piezoelectric vibration energy harvester with piezoelectric elements inserted between two nearby oscillators Mech. Syst. Signal Process. 68 138–54 10.1016/j.ymssp.2015.07.001 A multi-degree of freedom piezoelectric vibration energy harvester with piezoelectric elements inserted between two nearby oscillators Xiao H, Wang X and John S Mech. Syst. Signal Process. 68 2016 138 154 

  35. [35] Blystad L-C and Halvorsen E 2010 A piezoelectric energy harvester with a mechanical end stop on one side Microsyst. Technol. 17 505–11 10.1007/s00542-010-1163-0 A piezoelectric energy harvester with a mechanical end stop on one side Blystad L-C and Halvorsen E Microsyst. Technol. 0946-7076 17 2010 505 511 

  36. [36] Narimani A, Golnaraghi M and Nakhaie Jazar G 2004 Frequency response of a piecewise linear vibration isolator J. Vib. Control 10 1775–94 10.1177/1077546304044795 Frequency response of a piecewise linear vibration isolator Narimani A, Golnaraghi M and Nakhaie Jazar G J. Vib. Control 10 2004 1775 1794 

  37. [37] Al-Ashtari W, Hunstig M, Hemsel T and Sextro W 2011 Analytical determination of characteristic frequencies and equivalent circuit parameters of a piezoelectric bimorph J. Intell. Mater. Syst. Struct. 23 15–23 10.1177/1045389X11430742 Analytical determination of characteristic frequencies and equivalent circuit parameters of a piezoelectric bimorph Al-Ashtari W, Hunstig M, Hemsel T and Sextro W J. Intell. Mater. Syst. Struct. 23 2011 15 23 

  38. [38] Shu Y and Lien I 2006 Efficiency of energy conversion for a piezoelectric power harvesting system J. Micromech. Microeng. 16 2429–38 10.1088/0960-1317/16/11/026 Efficiency of energy conversion for a piezoelectric power harvesting system Shu Y and Lien I J. Micromech. Microeng. 0960-1317 16 11 026 2006 2429 2438 

  39. [39] Yang Y and Tang L 2009 Equivalent circuit modelling of piezoelectric energy harvesters J. Intell. Mater. Syst. Struct. 20 2223–35 10.1177/1045389X09351757 Equivalent circuit modelling of piezoelectric energy harvesters Yang Y and Tang L J. Intell. Mater. Syst. Struct. 20 2009 2223 2235 

  40. [40] Zhou L, Sun J, Zheng X, Deng S, Zhao J, Peng S, Zhang Y, Wang X and Cheng H 2012 A model for the energy harvesting performance of shear mode piezoelectric cantilever Sensors Actuators A 179 185–92 10.1016/j.sna.2012.02.041 A model for the energy harvesting performance of shear mode piezoelectric cantilever Zhou L, Sun J, Zheng X, Deng S, Zhao J, Peng S, Zhang Y, Wang X and Cheng H Sensors Actuators 0924-4247 179 A 2012 185 192 

  41. [41] Romani A, Paganelli R, Sangiorge E and Tartagni M 2013 Joint modeling of piezoelectric transducers and power conversion circuits for energy harvesting applications IEEE Sens. J. 13 916–25 10.1109/JSEN.2012.2219580 Joint modeling of piezoelectric transducers and power conversion circuits for energy harvesting applications Romani A, Paganelli R, Sangiorge E and Tartagni M IEEE Sens. J. 1530-437X 13 2013 916 925 

  42. [42] Yang Y, Wang S, Stein P, Xu B X and Yang T 2017 Vibration-based energy harvesting with a clamped piezoelectric circular diaphragm: analysis and identification of optimal structural parameters Smart Mater. Struct. 26 045011 10.1088/1361-665X/aa5fda Vibration-based energy harvesting with a clamped piezoelectric circular diaphragm: analysis and identification of optimal structural parameters Yang Y, Wang S, Stein P, Xu B X and Yang T Smart Mater. Struct. 0964-1726 26 4 045011 2017 

  43. [43] Xiao Z, Yang T Q, Dong Y and Wang X C 2014 Energy harvester array using piezoelectric circular diaphragm for broadband vibration Appl. Phys. Lett. 104 223904 10.1063/1.4878537 Energy harvester array using piezoelectric circular diaphragm for broadband vibration Xiao Z, Yang T Q, Dong Y and Wang X C Appl. Phys. Lett. 104 223904 2014 

  44. [44] Kim S, Clark W W and Wang Q M 2005 Piezoelectric energy harvesting with a clamped circular plate: analysis J. Intell. Mater. Syst. Struct. 16 847–54 10.1177/1045389X05054044 Piezoelectric energy harvesting with a clamped circular plate: analysis Kim S, Clark W W and Wang Q M J. Intell. Mater. Syst. Struct. 16 2005 847 854 

  45. [45] Nguyen D S and Halvorsen E 2010 Analysis of vibration energy harvesters utilizing a variety of nonlinear springs Proc. Power-MEMS 10 331–4 Analysis of vibration energy harvesters utilizing a variety of nonlinear springs Nguyen D S and Halvorsen E Proc. Power-MEMS 10 2010 331 334 

  46. [46] Hosseinloo A H and Turitsyn K 2016 Design of vibratory energy harvesters under stochastic parametric uncertainty: a new optimization philosophy Smart Mater. Struct. 25 055023 10.1088/0964-1726/25/5/055023 Design of vibratory energy harvesters under stochastic parametric uncertainty: a new optimization philosophy Hosseinloo A H and Turitsyn K Smart Mater. Struct. 0964-1726 25 5 055023 2016 

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로