$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Heat dissipation of high-power light emitting diode chip on board by a novel flat plate heat pipe

Applied thermal engineering, v.123, 2017년, pp.19 - 28  

Wang, Yiwei (Corresponding author at: 2 Nengyuan Rd, Wushan, Tianhe District, Guangzhou 510640, China.) ,  Cen, Jiwen ,  Jiang, Fangming ,  Cao, Wenjiong

Abstract AI-Helper 아이콘AI-Helper

Abstract A new flat plate heat pipe (FPHP) which has many parallel-arranged micro-fins casted on the condensation surface was designed and fabricated. An experimental system for studying the thermal performance of this FPHP when applied for cooling high-power LED (light emitting diode) COBs (chip o...

주제어

참고문헌 (44)

  1. Appl. Therm. Eng. Lai 29 1239 2009 10.1016/j.applthermaleng.2008.06.023 Liquid cooling of bright LEDs for automotive applications 

  2. Microelectron. J. Lei 38 1 2007 10.1016/j.mejo.2006.09.004 Color rendering and luminous efficacy of trichromatic and tetrachromatic LED-based white LEDs 

  3. Microelectron. J. Wu 43 280 2012 10.1016/j.mejo.2012.01.007 A study on the heat dissipation of high power multi-chip COB LEDs 

  4. Microelectron. Reliab. Tsai 52 845 2012 10.1016/j.microrel.2011.04.008 Thermal measurements and analyses of low-cost high-power LED packages and their modules 

  5. Microelectron. Reliab. Ha 52 836 2012 10.1016/j.microrel.2012.02.005 Development of a thermal resistance model for chip-on-board packaging of high power LED arrays 

  6. Mat. Sci. Semicon. Proc. Maeng 38 357 2015 10.1016/j.mssp.2014.11.025 Thermal characteristics for chip on metal package of LED lighting module 

  7. Curr. Appl. Phys. Sim 12 494 2012 10.1016/j.cap.2011.08.008 Characteristic enhancement of white LED lamp using low temperature co-fired ceramic-chip on board package 

  8. Int. J. Precis. Eng. Manuf. Jeon 15 2437 2014 10.1007/s12541-014-0611-7 Quantitative analysis on air-dispensing parameters for manufacturing dome lenses of chip-on-board LED system 

  9. IEEE T. Electron. Dev. Kong 62 2251 2015 10.1109/TED.2015.2436820 Effects of die-attach material and ambient temperature on properties of high-power COB blue LED module 

  10. J. Cryst. Growth Narendran 268 449 2004 10.1016/j.jcrysgro.2004.04.071 Solid-state lighting: failure analysis of white LEDs 

  11. J. Illuminat. Eng. Soc. Narendran 30 57 2001 10.1080/00994480.2001.10748334 What is useful life for white light LEDs? 

  12. Thermochim. Acta Lu 493 25 2009 10.1016/j.tca.2009.03.016 Thermal analysis of loop heat pipe used for high-power LED 

  13. Energ. Procedia Dehuai 17 1974 2012 10.1016/j.egypro.2012.02.341 A novel manufacturing approach of phase-change heat sink for high-power LED 

  14. Microelectron. J. Lu 42 1257 2011 10.1016/j.mejo.2011.08.009 Thermal analysis of high power LED package with heat pipe heat sink 

  15. Appl. Therm. Eng. Lin 31 2221 2011 10.1016/j.applthermaleng.2011.03.003 Heat transfer characteristics and LED heat sink application of aluminum plate oscillating heat pipes 

  16. Int. J. Heat Mass Transf. Jang 55 515 2012 10.1016/j.ijheatmasstransfer.2011.11.016 Multidisciplinary optimization of a pin-fin radial heat sink for LED lighting applications 

  17. Appl. Therm. Eng. Li 56 18 2013 10.1016/j.applthermaleng.2013.03.016 A loop-heat-pipe heat sink with parallel condensers for high-power integrated LED chips 

  18. Int. Commun. Heat Mass Deng 37 788 2010 10.1016/j.icheatmasstransfer.2010.04.011 A liquid metal cooling system for the thermal management of high power LEDs 

  19. Microelectron. Reliab. Li 51 2210 2011 10.1016/j.microrel.2011.05.006 Study on a cooling system based on thermoelectric cooler for thermal management of high-power LEDs 

  20. Appl. Therm. Eng. Wong 31 1757 2011 10.1016/j.applthermaleng.2011.02.020 Performance tests on a novel vapor chamber 

  21. Exp. Therm. Fluid Sci. Ji 40 93 2012 10.1016/j.expthermflusci.2012.02.004 Copper foam based vapor chamber for high heat flux dissipation 

  22. Adv. Mech. Eng. Boukhanouf 5 474935 2013 10.1155/2013/474935 Simulation and experimental investigation of thermal performance of a miniature flat plate heat pipe 

  23. Microelectron. Reliab. Hsieh 52 1071 2012 10.1016/j.microrel.2011.11.016 Experimental study of micro rectangular groove structure covered with multi mesh layers on performance of FPHP for LED lighting module 

  24. Int. J. Heat Mass Transf. Wang 53 3990 2010 10.1016/j.ijheatmasstransfer.2010.05.018 Development of 30Watt high-power LEDs vapor chamber-based plate 

  25. Int. J. Heat Mass Transf. Wong 53 2377 2010 10.1016/j.ijheatmasstransfer.2010.02.001 A novel vapor chamber and its performance 

  26. Appl. Therm. Eng. Lefèvre 37 95 2012 10.1016/j.applthermaleng.2011.11.022 Experimental investigations of flat plate heat pipes with screen meshes or grooves covered with screen meshes as capillary structure 

  27. Appl. Therm. Eng. Ming 29 422 2009 10.1016/j.applthermaleng.2008.03.030 The experimental and numerical investigation of a grooved vapor chamber 

  28. Energ. Convers. Manage. Peng 74 44 2013 10.1016/j.enconman.2013.05.004 Study on heat transfer performance of an aluminum flat plate heat pipe with fins in vapor chamber 

  29. Int. J. Heat Mass Transf. Lips 53 694 2010 10.1016/j.ijheatmasstransfer.2009.10.022 Combined effects of the filling ratio and the vapour space thickness on the performance of a flat plate heat pipe 

  30. Exp. Heat Transf. Huang 22 26 2009 10.1080/08916150802530187 Experimental investigation of vapor chamber module applied to high-power light-emitting diodes 

  31. J. Mar. Sci. Techn. Wang 19 353 2011 10.51400/2709-6998.2175 Experimental analysis for thermal performance of a vapor chamber applied to high-performance servers 

  32. Appl. Therm. Eng. Chen 51 864 2013 10.1016/j.applthermaleng.2012.10.035 Feasibility study of an aluminum vapor chamber with radial grooved and sintered powders wick structures 

  33. Appl. Therm. Eng. Wang 31 2367 2011 10.1016/j.applthermaleng.2011.03.037 Effect of evaporation section and condensation section length on thermal performance of flat plate heat pipe 

  34. Int. J. Heat Mass Transf. Chen 77 874 2014 10.1016/j.ijheatmasstransfer.2014.06.029 Cooling performance of flat plate heat pipes with different liquid filling ratios 

  35. Energ. Convers. Manage. Hsieh 49 1774 2008 10.1016/j.enconman.2007.10.024 Thermal performance of flat vapor chamber heat spreader 

  36. Int. Commun. Heat Mass Yung 37 1266 2010 10.1016/j.icheatmasstransfer.2010.07.023 Thermal performance of high brightness LED array package on PCB 

  37. Exp. Therm. Fluid Sci. Guo 48 147 2013 10.1016/j.expthermflusci.2013.02.017 Effects of upwind area of tube inserts on heat transfer and flow resistance characteristics of turbulent flow 

  38. IEEE T. Power Electr. Juntunen 29 1410 2014 10.1109/TPEL.2013.2260769 Copper-core MCPCB with thermal vias for high-power COB LED modules 

  39. IEEE Trans. Electro. Dev. Ying 62 896 2015 10.1109/TED.2015.2390255 Thermal analysis of high-power multichip COB light-emitting diodes with different chip sizes 

  40. Exp. Therm. Fluid Sci. Wang 48 222 2013 10.1016/j.expthermflusci.2013.03.004 Experimental investigations of flat plate heat pipes with interlaced narrow grooves or channels as capillary structure 

  41. Exp. Techn. Wang 35 35 2011 10.1111/j.1747-1567.2010.00652.x A novel formula for effective thermal conductivity of vapor chamber 

  42. Appl. Therm. Eng. Solomon 100 462 2016 10.1016/j.applthermaleng.2016.02.042 Analytical expression for thermal conductivity of heat pipe 

  43. ANSYS Inc., Southpointe, Ansys Icepak user’s guide release 14.0, Canonsburg, PA; 2011, pp. 694-695. 

  44. Comput. Phys. Commun. Jiang 176 471 2007 10.1016/j.cpc.2006.12.003 Mesoscale SPH modeling of fluid flow in isotropic porous media 

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로