$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Quantum machine learning 원문보기

Nature, v.549 no.7671 = no.7671, 2017년, pp.195 - 202  

Biamonte, Jacob (Quantum Complexity Science Initiative, Skolkovo Institute of Science and Technology, Skoltech Building 3, Moscow 143026, Russia) ,  Wittek, Peter (Institute for Quantum Computing, University of Waterloo, Waterloo, N2L 3G1 Ontario, Canada) ,  Pancotti, Nicola (ICFO—) ,  Rebentrost, Patrick (The Institute of Photonic Sciences, Castelldefels, Barcelona 08860 Spain) ,  Wiebe, Nathan (Max Planck Institute of Quantum Optics, 1 Hans-Kopfermannstrasse, D-85748 Garching, Germany) ,  Lloyd, Seth (Massachusetts Institute of Technology, Research Laboratory of Electronics, Cambridge, Massachusetts 02139, USA)

Abstract AI-Helper 아이콘AI-Helper

Fuelled by increasing computer power and algorithmic advances, machine learning techniques have become powerful tools for finding patterns in data. Quantum systems produce atypical patterns that classical systems are thought not to produce efficiently, so it is reasonable to postulate that quantum c...

참고문헌 (109)

  1. Psychol. Rev. F Rosenblatt 65 386 1958 10.1037/h0042519 Rosenblatt, F. The perceptron: a probabilistic model for information storage and organization in the brain. Psychol. Rev. 65, 386 (1958) 

  2. Nature Y LeCun 521 436 2015 10.1038/nature14539 LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521, 436-444 (2015) 

  3. QV Le 8595 2013 IEEE Int. Conf. on Acoustics, Speech and Signal Processing (ICASSP) Le, Q. V. Building high-level features using large scale unsupervised learning. In IEEE Int. Conf. on Acoustics, Speech and Signal Processing (ICASSP) 8595-8598 (IEEE, 2013) 

  4. Contemp. Phys. M Schuld 56 172 2015 10.1080/00107514.2014.964942 Schuld, M., Sinayskiy, I. & Petruccione, F. An introduction to quantum machine learning. Contemp. Phys. 56, 172-185 (2015) 

  5. 10.1016/B978-0-12-800953-6.00004-9 Wittek, P. Quantum Machine Learning: What Quantum Computing Means to Data Mining (Academic Press, New York, NY, USA, 2014) 

  6. Adcock, J. et al. Advances in quantum machine learning. Preprint at https://arxiv.org/abs/1512.02900 (2015) 

  7. Arunachalam, S. & de Wolf, R. A survey of quantum learning theory. Preprint at https://arxiv.org/abs/1701.06806 (2017) 

  8. Phys. Rev. Lett. AW Harrow 103 150502 2009 10.1103/PhysRevLett.103.150502 Harrow, A. W., Hassidim, A. & Lloyd, S. Quantum algorithm for linear systems of equations. Phys. Rev. Lett. 103, 150502 (2009) 

  9. Phys. Rev. Lett. N Wiebe 109 050505 2012 10.1103/PhysRevLett.109.050505 Wiebe, N., Braun, D. & Lloyd, S. Quantum algorithm for data fitting. Phys. Rev. Lett. 109, 050505 (2012) 

  10. Childs, A. M., Kothari, R. & Somma, R. D. Quantum linear systems algorithm with exponentially improved dependence on precision. Preprint at https://arxiv.org/abs/1511.02306 (2015) 

  11. Nat. Phys. S Lloyd 10 631 2014 10.1038/nphys3029 Lloyd, S., Mohseni, M. & Rebentrost, P. Quantum principal component analysis. Nat. Phys. 10, 631-633 (2014) 

  12. Kimmel, S., Lin, C. Y.-Y., Low, G. H., Ozols, M. & Yoder, T. J. Hamiltonian simulation with optimal sample complexity. Preprint at https://arxiv.org/abs/1608.00281 (2016) 

  13. Phys. Rev. Lett. P Rebentrost 113 130503 2014 10.1103/PhysRevLett.113.130503 Rebentrost, P., Mohseni, M. & Lloyd, S. Quantum support vector machine for big data classification. Phys. Rev. Lett. 113, 130503 (2014). This study applies quantum matrix inversion in a supervised discriminative learning algorithm. 

  14. Nat. Commun. S Lloyd 7 10138 2016 10.1038/ncomms10138 Lloyd, S., Garnerone, S. & Zanardi, P. Quantum algorithms for topological and geometric analysis of data. Nat. Commun. 7, 10138 (2016) 

  15. Dridi, R. & Alghassi, H. Homology computation of large point clouds using quantum annealing. Preprint at https://arxiv.org/abs/1512.09328 (2015) 

  16. Rebentrost, P., Steffens, A. & Lloyd, S. Quantum singular value decomposition of non-sparse low-rank matrices. Preprint at https://arxiv.org/abs/1607.05404 (2016) 

  17. Phys. Rev. A M Schuld 94 022342 2016 10.1103/PhysRevA.94.022342 Schuld, M., Sinayskiy, I. & Petruccione, F. Prediction by linear regression on a quantum computer. Phys. Rev. A 94, 022342 (2016) 

  18. Brandao, F. G. & Svore, K. Quantum speed-ups for semidefinite programming. Preprint at https://arxiv.org/abs/1609.05537 (2016) 

  19. Rebentrost, P., Schuld, M., Petruccione, F. & Lloyd, S. Quantum gradient descent and Newton’s method for constrained polynomial optimization. Preprint at https://arxiv.org/abs/1612.01789 (2016) 

  20. Wiebe, N., Kapoor, A. & Svore, K. M. Quantum deep learning. Preprint at https://arxiv.org/abs/1412.3489 (2014) 

  21. Adachi, S. H. & Henderson, M. P. Application of quantum annealing to training of deep neural networks. Preprint at https://arxiv.org/abs/arXiv:1510.06356 (2015) 

  22. Amin, M. H., Andriyash, E., Rolfe, J., Kulchytskyy, B. & Melko, R. Quantum Boltzmann machine. Preprint at https://arxiv.org/abs/arXiv:1601.02036 (2016) 

  23. Phys. Rev. A M Sasaki 64 022317 2001 10.1103/PhysRevA.64.022317 Sasaki, M., Carlini, A. & Jozsa, R. Quantum template matching. Phys. Rev. A 64, 022317 (2001) 

  24. Phys. Rev. A A Bisio 81 032324 2010 10.1103/PhysRevA.81.032324 Bisio, A., Chiribella, G., D’Ariano, G. M., Facchini, S. & Perinotti, P. Optimal quantum learning of a unitary transformation. Phys. Rev. A 81, 032324 (2010) 

  25. Phys. Lett. A A Bisio 375 3425 2011 10.1016/j.physleta.2011.08.002 Bisio, A., D’Ariano, G. M., Perinotti, P. & Sedlák, M. Quantum learning algorithms for quantum measurements. Phys. Lett. A 375, 3425-3434 (2011) 

  26. Sci. Rep. G Sentís 2 708 2012 10.1038/srep00708 Sentís, G., Calsamiglia, J., Muñoz-Tapia, R. & Bagan, E. Quantum learning without quantum memory. Sci. Rep. 2, 708 (2012) 

  27. EPJ Quant. Technol. G Sentís 2 17 2015 10.1140/epjqt/s40507-015-0030-4 Sentís, G., Gut¸a˘, M. & Adesso, G. Quantum learning of coherent states. EPJ Quant. Technol. 2, 17 (2015) 

  28. Phys. Rev. X GD Paparo 4 031002 2014 Paparo, G. D., Dunjko, V., Makmal, A., Martin-Delgado, M. A. & Briegel, H. J. Quantum speedup for active learning agents. Phys. Rev. X 4, 031002 (2014) 

  29. New J. Phys. V Dunjko 17 023006 2015 10.1088/1367-2630/17/2/023006 Dunjko, V., Friis, N. & Briegel, H. J. Quantum-enhanced deliberation of learning agents using trapped ions. New J. Phys. 17, 023006 (2015) 

  30. Phys. Rev. Lett. V Dunjko 117 130501 2016 10.1103/PhysRevLett.117.130501 Dunjko, V., Taylor, J. M. & Briegel, H. J. Quantum-enhanced machine learning. Phys. Rev. Lett. 117, 130501 (2016). This paper investigates the theoretical maximum speedup achievable in reinforcement learning in a closed quantum system, which proves to be Grover-like if we wish to obtain classical verification of the learning process. 

  31. Phys. Rev. Lett. G Sentís 117 150502 2016 10.1103/PhysRevLett.117.150502 Sentís, G., Bagan, E., Calsamiglia, J., Chiribella, G. & Muñoz Tapia, R. Quantum change point. Phys. Rev. Lett. 117, 150502 (2016) 

  32. Phys. Rev. X M Faccin 4 041012 2014 Faccin, M., Migdał, P., Johnson, T. H., Bergholm, V. & Biamonte, J. D. Community detection in quantum complex networks. Phys. Rev. X 4, 041012 (2014). This paper defines closeness measures and then maximizes modularity with hierarchical clustering to partition quantum data. 

  33. Phys. Rev. Lett. BD Clader 110 250504 2013 10.1103/PhysRevLett.110.250504 Clader, B. D., Jacobs, B. C. & Sprouse, C. R. Preconditioned quantum linear system algorithm. Phys. Rev. Lett. 110, 250504 (2013) 

  34. Lloyd, S., Mohseni, M. & Rebentrost, P. Quantum algorithms for supervised and unsupervised machine learning. Preprint at https://arxiv.org/abs/1307.0411 (2013) 

  35. Quantum Inf. Comput. N Wiebe 15 316 2015 Wiebe, N., Kapoor, A. & Svore, K. M. Quantum algorithms for nearest-neighbor methods for supervised and unsupervised learning. Quantum Inf. Comput. 15, 316-356 (2015) 

  36. Phys. Rev. Lett. H-K Lau 118 080501 2017 10.1103/PhysRevLett.118.080501 Lau, H.-K., Pooser, R., Siopsis, G. & Weedbrook, C. Quantum machine learning over infinite dimensions. Phys. Rev. Lett. 118, 080501 (2017) 

  37. E Aïmeur 431 2006 Machine Learning in a Quantum World Aïmeur, E ., Brassard, G . & Gambs, S. in Machine Learning in a Quantum World 431-442 (Springer, 2006) 

  38. SIAM J. Comput. PW Shor 26 1484 1997 10.1137/S0097539795293172 Shor, P. W. Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comput. 26, 1484-1509 (1997) 

  39. Nielsen, M. A . & Chuang, I. L. Quantum Computation and Quantum Information (Cambridge Univ. Press, 2000) 

  40. Wossnig, L., Zhao, Z. & Prakash, A. A quantum linear system algorithm for dense matrices. Preprint at https://arxiv.org/abs/1704.06174 (2017) 

  41. Phys. Rev. Lett. V Giovannetti 100 160501 2008 10.1103/PhysRevLett.100.160501 Giovannetti, V., Lloyd, S. & Maccone, L. Quantum random access memory. Phys. Rev. Lett. 100, 160501 (2008) 

  42. Science S Lloyd 273 1073 1996 10.1126/science.273.5278.1073 Lloyd, S. Universal quantum simulators. Science 273, 1073-1078 (1996) 

  43. 10.1007/978-1-4757-2440-0 Vapnik, V. The Nature of Statistical Learning Theory (Springer, 1995) 

  44. Neural Netw. D Anguita 16 763 2003 10.1016/S0893-6080(03)00087-X Anguita, D., Ridella, S., Rivieccio, F. & Zunino, R. Quantum optimization for training support vector machines. Neural Netw. 16, 763-770 (2003) 

  45. Dürr, C. & Høyer, P. A quantum algorithm for finding the minimum. Preprint at https://arxiv.org/abs/quant-ph/9607014 (1996) 

  46. Chatterjee, R. & Yu, T. Generalized coherent states, reproducing kernels, and quantum support vector machines. Preprint at https://arxiv.org/abs/1612.03713 (2016) 

  47. Zhao, Z., Fitzsimons, J. K. & Fitzsimons, J. F. Quantum assisted Gaussian process regression. Preprint at https://arxiv.org/abs/1512.03929 (2015) 

  48. Phys. Rev. Lett. Z Li 114 140504 2015 10.1103/PhysRevLett.114.140504 Li, Z., Liu, X., Xu, N. & Du, J. Experimental realization of a quantum support vector machine. Phys. Rev. Lett. 114, 140504 (2015) 

  49. Europhys. Lett. JD Whitfield 99 57004 2012 10.1209/0295-5075/99/57004 Whitfield, J. D., Faccin, M. & Biamonte, J. D. Ground-state spin logic. Europhys. Lett. 99, 57004 (2012) 

  50. Farhi, E., Goldstone, J. & Gutmann, S. A quantum approximate optimization algorithm. Preprint at https://arxiv.org/abs/1411.4028 (2014) 

  51. Nat. Phys. S Aaronson 11 291 2015 10.1038/nphys3272 Aaronson, S. Read the fine print. Nat. Phys. 11, 291-293 (2015) 

  52. New J. Phys. S Arunachalam 17 123010 2015 10.1088/1367-2630/17/12/123010 Arunachalam, S., Gheorghiu, V., Jochym-O’Connor, T., Mosca, M. & Srinivasan, P. V. On the robustness of bucket brigade quantum RAM. New J. Phys. 17, 123010 (2015) 

  53. Scherer, A. et al. Concrete resource analysis of the quantum linear system algorithm used to compute the electromagnetic scattering cross section of a 2D target. Preprint at https://arxiv.org/abs/1505.06552 (2015) 

  54. M Denil 2011 Neural Information Processing Systems (NIPS) Conf. on Deep Learning and Unsupervised Feature Learning Workshop Denil, M . & De Freitas, N. Toward the implementation of a quantum RBM. In Neural Information Processing Systems (NIPS) Conf. on Deep Learning and Unsupervised Feature Learning Workshop Vol. 5 (2011) 

  55. 10.1609/aaai.v28i1.8924 Dumoulin, V., Goodfellow, I. J., Courville, A. & Bengio, Y. On the challenges of physical implementations of RBMs. Preprint at https://arxiv.org/abs/1312.5258 (2013) 

  56. Phys. Rev. A M Benedetti 94 022308 2016 10.1103/PhysRevA.94.022308 Benedetti, M., Realpe-Gómez, J., Biswas, R. & Perdomo-Ortiz, A. Estimation of effective temperatures in quantum annealers for sampling applications: a case study with possible applications in deep learning. Phys. Rev. A 94, 022308 (2016) 

  57. Phys. Rev. A JD Biamonte 78 012352 2008 10.1103/PhysRevA.78.012352 Biamonte, J. D. & Love, P. J. Realizable Hamiltonians for universal adiabatic quantum computers. Phys. Rev. A 78, 012352 (2008). This study established the contemporary experimental target for non-stoquastic (that is, non-quantum stochastic) D-Wave quantum annealing hardware able to realize universal quantum Boltzmann machines. 

  58. Nature K Temme 471 87 2011 10.1038/nature09770 Temme, K., Osborne, T. J., Vollbrecht, K. G., Poulin, D. & Verstraete, F. Quantum metropolis sampling. Nature 471, 87-90 (2011) 

  59. Proc. Natl Acad. Sci. USA M-H Yung 109 754 2012 10.1073/pnas.1111758109 Yung, M.-H. & Aspuru-Guzik, A. A quantum-quantum metropolis algorithm. Proc. Natl Acad. Sci. USA 109, 754-759 (2012) 

  60. Quant. Inf. Comput. AN Chowdhury 17 41 2017 Chowdhury, A. N. & Somma, R. D. Quantum algorithms for Gibbs sampling and hitting-time estimation. Quant. Inf. Comput. 17, 41-64 (2017) 

  61. Kieferova, M. & Wiebe, N. Tomography and generative data modeling via quantum Boltzmann training. Preprint at https://arxiv.org/abs/1612.05204 (2016) 

  62. New J. Phys. S Lloyd 18 023042 2016 10.1088/1367-2630/18/2/023042 Lloyd, S. & Terhal, B. Adiabatic and Hamiltonian computing on a 2D lattice with simple 2-qubit interactions. New J. Phys. 18, 023042 (2016) 

  63. Inf. Sci. D Ventura 124 273 2000 10.1016/S0020-0255(99)00101-2 Ventura, D. & Martinez, T. Quantum associative memory. Inf. Sci. 124, 273-296 (2000) 

  64. New J. Phys. CE Granade 14 103013 2012 10.1088/1367-2630/14/10/103013 Granade, C. E., Ferrie, C., Wiebe, N. & Cory, D. G. Robust online Hamiltonian learning. New J. Phys. 14, 103013 (2012) 

  65. Phys. Rev. Lett. N Wiebe 112 190501 2014 10.1103/PhysRevLett.112.190501 Wiebe, N., Granade, C., Ferrie, C. & Cory, D. G. Hamiltonian learning and certification using quantum resources. Phys. Rev. Lett. 112, 190501 (2014) 

  66. New J. Phys. N Wiebe 17 022005 2015 10.1088/1367-2630/17/2/022005 Wiebe, N., Granade, C. & Cory, D. G. Quantum bootstrapping via compressed quantum Hamiltonian learning. New J. Phys. 17, 022005 (2015) 

  67. Marvian, I. & Lloyd, S. Universal quantum emulator. Preprint at https://arxiv.org/abs/1606.02734 (2016) 

  68. Nat. Commun. F Dolde 5 3371 2014 10.1038/ncomms4371 Dolde, F. et al. High-fidelity spin entanglement using optimal control. Nat. Commun. 5, 3371 (2014) 

  69. Phys. Rev. Appl. E Zahedinejad 6 054005 2016 10.1103/PhysRevApplied.6.054005 Zahedinejad, E., Ghosh, J. & Sanders, B. C. Designing high-fidelity single-shot three-qubit gates: a machine-learning approach. Phys. Rev. Appl. 6, 054005 (2016) 

  70. Phys. Rev. Lett. E Zahedinejad 114 200502 2015 10.1103/PhysRevLett.114.200502 Zahedinejad, E., Ghosh, J. & Sanders, B. C. High-fidelity single-shot Toffoli gate via quantum control. Phys. Rev. Lett. 114, 200502 (2015) 

  71. Phys. Rev. A D Zeidler 64 023420 2001 10.1103/PhysRevA.64.023420 Zeidler, D., Frey, S., Kompa, K.-L. & Motzkus, M. Evolutionary algorithms and their application to optimal control studies. Phys. Rev. A 64, 023420 (2001) 

  72. Phys. Rev. Lett. U Las Heras 116 230504 2016 10.1103/PhysRevLett.116.230504 Las Heras, U., Alvarez-Rodriguez, U., Solano, E. & Sanz, M. Genetic algorithms for digital quantum simulations. Phys. Rev. Lett. 116, 230504 (2016) 

  73. npj Quant. Inf. L Banchi 2 16019 2016 10.1038/npjqi.2016.19 Banchi, L., Pancotti, N. & Bose, S. Quantum gate learning in qubit networks: Toffoli gate without time-dependent control. npj Quant. Inf. 2, 16019 (2016) 

  74. 10.1103/PhysRevA.95.012335 August, M. & Ni, X. Using recurrent neural networks to optimize dynamical decoupling for quantum memory. Preprint at https://arxiv.org/abs/1604.00279 (2016) 

  75. J. Phys. Chem. B Amstrup 99 5206 1995 10.1021/j100014a048 Amstrup, B., Toth, G. J., Szabo, G., Rabitz, H. & Loerincz, A. Genetic algorithm with migration on topology conserving maps for optimal control of quantum systems. J. Phys. Chem. 99, 5206-5213 (1995) 

  76. Phys. Rev. Lett. A Hentschel 104 063603 2010 10.1103/PhysRevLett.104.063603 Hentschel, A. & Sanders, B. C. Machine learning for precise quantum measurement. Phys. Rev. Lett. 104, 063603 (2010) 

  77. Phys. Rev. Lett. NB Lovett 110 220501 2013 10.1103/PhysRevLett.110.220501 Lovett, N. B., Crosnier, C., Perarnau-Llobet, M. & Sanders, B. C. Differential evolution for many-particle adaptive quantum metrology. Phys. Rev. Lett. 110, 220501 (2013) 

  78. Neurocomputing Pantita Palittapongarnpim 268 116 2017 10.1016/j.neucom.2016.12.087 Palittapongarnpim, P., Wittek, P., Zahedinejad, E., Vedaie, S. & Sanders, B. C. Learning in quantum control: high-dimensional global optimization for noisy quantum dynamics. Neurocomputing https://doi.org/10.1016/j.neucom.2016.12.087 (in the press) 

  79. Nat. Phys. J Carrasquilla 13 431 2017 10.1038/nphys4035 Carrasquilla, J. & Melko, R. G. Machine learning phases of matter. Nat. Phys. 13, 431-434 (2017) 

  80. 10.1038/s41598-017-09098-0 Broecker, P., Carrasquilla, J., Melko, R. G. & Trebst, S. Machine learning quantum phases of matter beyond the fermion sign problem. Preprint at https://arxiv.org/abs/1608.07848 (2016) 

  81. Science G Carleo 355 602 2017 10.1126/science.aag2302 Carleo, G. & Troyer, M. Solving the quantum many-body problem with artificial neural networks. Science 355, 602-606 (2017) 

  82. Nat. Commun. D Brunner 4 1364 2013 10.1038/ncomms2368 Brunner, D., Soriano, M. C., Mirasso, C. R. & Fischer, I. Parallel photonic information processing at gigabyte per second data rates using transient states. Nat. Commun. 4, 1364 (2013) 

  83. Phys. Rev. Lett. X-D Cai 114 110504 2015 10.1103/PhysRevLett.114.110504 Cai, X.-D. et al. Entanglement-based machine learning on a quantum computer. Phys. Rev. Lett. 114, 110504 (2015) 

  84. J. Mach. Learn. Res. M Hermans 16 2081 2015 Hermans, M., Soriano, M. C., Dambre, J., Bienstman, P. & Fischer, I. Photonic delay systems as machine learning implementations. J. Mach. Learn. Res. 16, 2081-2097 (2015) 

  85. EPJ Quant. Technol. N Tezak 2 10 2015 10.1140/epjqt/s40507-015-0023-3 Tezak, N. & Mabuchi, H. A coherent perceptron for all-optical learning. EPJ Quant. Technol. 2, 10 (2015) 

  86. Phys. Rev. A R Neigovzen 79 042321 2009 10.1103/PhysRevA.79.042321 Neigovzen, R., Neves, J. L., Sollacher, R. & Glaser, S. J. Quantum pattern recognition with liquid-state nuclear magnetic resonance. Phys. Rev. A 79, 042321 (2009) 

  87. Phys. Rev. Lett. M Pons 98 023003 2007 10.1103/PhysRevLett.98.023003 Pons, M. et al. Trapped ion chain as a neural network: error resistant quantum computation. Phys. Rev. Lett. 98, 023003 (2007) 

  88. H Neven 1 2009 24th Ann. Conf. on Neural Information Processing Systems (NIPS-09) Neven, H . et al. Binary classification using hardware implementation of quantum annealing. In 24th Ann. Conf. on Neural Information Processing Systems (NIPS-09) 1-17 (2009). This paper was among the first experimental demonstrations of machine learning using quantum annealing. 

  89. VS Denchev 2012 Proc. 29th Int. Conf. on Machine Learning (ICML-2012) Denchev, V. S ., Ding, N ., Vishwanathan, S . & Neven, H. Robust classification with adiabatic quantum optimization. In Proc. 29th Int. Conf. on Machine Learning (ICML-2012) (2012) 

  90. Process. K Karimi 11 77 2012 Karimi, K. et al. Investigating the performance of an adiabatic quantum optimization processor. Quantum Inform. Process. 11, 77-88 (2012) 

  91. EPJ Spec. Top. BA O’Gorman 224 163 2015 10.1140/epjst/e2015-02349-9 O’Gorman, B. A. et al. Bayesian network structure learning using quantum annealing. EPJ Spec. Top. 224, 163-188 (2015) 

  92. Denchev, V. S., Ding, N., Matsushima, S., Vishwanathan, S. V. N. & Neven, H. Totally corrective boosting with cardinality penalization. Preprint at https://arxiv.org/abs/1504.01446 (2015) 

  93. Kerenidis, I. & Prakash, A. Quantum recommendation systems. Preprint at https://arxiv.org/abs/1603.08675 (2016) 

  94. 10.1038/s41598-017-13378-0 Alvarez-Rodriguez, U., Lamata, L., Escandell-Montero, P., Martín-Guerrero, J. D. & Solano, E. Quantum machine learning without measurements. Preprint at https://arxiv.org/abs/1612.05535 (2016) 

  95. Sci. Rep. P Wittek 7 45672 2017 10.1038/srep45672 Wittek, P. & Gogolin, C. Quantum enhanced inference in Markov logic networks. Sci. Rep. 7, 45672 (2017) 

  96. Sci. Rep. L Lamata 7 1609 2017 10.1038/s41598-017-01711-6 Lamata, L. Basic protocols in quantum reinforcement learning with superconducting circuits. Sci. Rep. 7, 1609 (2017) 

  97. 10.1209/0295-5075/119/60002 Schuld, M., Fingerhuth, M. & Petruccione, F. Quantum machine learning with small-scale devices: implementing a distance-based classifier with a quantum interference circuit. Preprint at https://arxiv.org/abs/1703.10793 (2017) 

  98. Phys. Rev. Lett. A Monràs 118 190503 2017 10.1103/PhysRevLett.118.190503 Monràs, A., Sentís, G. & Wittek, P. Inductive supervised quantum learning. Phys. Rev. Lett. 118, 190503 (2017). This paper proves that supervised learning protocols split into a training and application phase in both the classical and the quantum cases. 

  99. Sci. Rep. M Tiersch 5 12874 2015 10.1038/srep12874 Tiersch, M., Ganahl, E. J. & Briegel, H. J. Adaptive quantum computation in changing environments using projective simulation. Sci. Rep. 5, 12874 (2015) 

  100. 10.1103/PhysRevApplied.6.054005 Zahedinejad, E., Ghosh, J. & Sanders, B. C. Designing high-fidelity single-shot three-qubit gates: a machine learning approach. Preprint at https://arxiv.org/abs/1511.08862 (2015) 

  101. P Palittapongarnpim 327 2016 Proc. 24th Eur. Symp. Artificial Neural Networks (ESANN-16) on Computational Intelligence and Machine Learning Palittapongarnpim, P ., Wittek, P . & Sanders, B. C. Controlling adaptive quantum phase estimation with scalable reinforcement learning. In Proc. 24th Eur. Symp. Artificial Neural Networks (ESANN-16) on Computational Intelligence and Machine Learning 327-332 (2016) 

  102. 10.1038/s41534-017-0032-4 Wan, K. H., Dahlsten, O., Kristjánsson, H., Gardner, R. & Kim, M. S. Quantum generalisation of feedforward neural networks. Preprint at https://arxiv.org/abs/1612.01045 (2016) 

  103. Lu, D. et al. Towards quantum supremacy: enhancing quantum control by bootstrapping a quantum processor. Preprint at https://arxiv.org/abs/1701.01198 (2017) 

  104. Nat. Commun. S Mavadia 8 14106 2017 10.1038/ncomms14106 Mavadia, S., Frey, V., Sastrawan, J., Dona, S. & Biercuk, M. J. Prediction and real-time compensation of qubit decoherence via machine learning. Nat. Commun. 8, 14106 (2017) 

  105. Science TF Rønnow 345 420 2014 10.1126/science.1252319 Rønnow, T. F. et al. Defining and detecting quantum speedup. Science 345, 420-424 (2014) 

  106. Phys. Rev. A GH Low 89 062315 2014 10.1103/PhysRevA.89.062315 Low, G. H., Yoder, T. J. & Chuang, I. L. Quantum inference on Bayesian networks. Phys. Rev. A 89, 062315 (2014) 

  107. Wiebe, N. & Granade, C. Can small quantum systems learn? Preprint at https://arxiv.org/abs/1512.03145 (2015) 

  108. Adv. Neural Inform. Process. Syst. N Wiebe 29 3999 2016 Wiebe, N., Kapoor, A. & Svore, K. M. Quantum perceptron models. Adv. Neural Inform. Process. Syst. 29, 3999-4007 (2016) 

  109. Quantum Inform. Process. A Scherer 16 60 2017 10.1007/s11128-016-1495-5 Scherer, A. et al. Concrete resource analysis of the quantum linear-system algorithm used to compute the electromagnetic scattering cross section of a 2D target. Quantum Inform. Process. 16, 60 (2017) 

관련 콘텐츠

원문 보기

원문 URL 링크

*원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다.

오픈액세스(OA) 유형

GREEN

저자가 공개 리포지터리에 출판본, post-print, 또는 pre-print를 셀프 아카이빙 하여 자유로운 이용이 가능한 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로