$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Microbiota, metabolome, and immune alterations in obese mice fed a high‐fat diet containing type 2 resistant starch

Molecular nutrition & food research, v.61 no.11, 2017년, pp.1700184 -   

Barouei, Javad (Department of Food Science & Technology, University of California, Davis, CA, USA) ,  Bendiks, Zach (Department of Food Science & Technology, University of California, Davis, CA, USA) ,  Martinic, Alice (Department of Nutrition, University of California, Davis, CA, USA) ,  Mishchuk, Darya (Department of Food Science & Technology, University of California, Davis, CA, USA) ,  Heeney, Dustin (Department of Food Science & Technology, University of California, Davis, CA, USA) ,  Hsieh, Yu‐Hsin (Department of Food Science & Technology, University of California, Davis, CA, USA) ,  Kieffer, Dorothy (Department of Nutrition, University of California, Davis, CA, USA) ,  Zaragoza, Jose (Department of Food Science & Technology, University of California, Davis, CA, USA) ,  Martin, Roy (Department of Nutrition, University of California, Davis, CA, USA) ,  Slupsky, Carolyn (Department of Food Science & Technology, University of California, Davis, CA, USA) ,  Marco, Maria L (Department of Food Science & Technology, University of California, Davis, CA, USA)

Abstract AI-Helper 아이콘AI-Helper

ScopeWe examined the intestinal and systemic responses to incorporating a type 2 resistant starch (RS) into a high fat diet fed to obese mice.Methods and resultsDiet‐induced obese, C57BL/6J male mice were fed an HF diet without or with 20% (by weight) high‐amylose maize resistant starch ...

주제어

참고문헌 (71)

  1. Goodwin , P. J. , Stambolic , V. , Impact of the obesity epidemic on cancer . Annu. Rev. Med. 2015 , 66 , 281 – 296 . 

  2. Scherer , P. E. , Hill , J. A. , Obesity, diabetes, and cardiovascular diseases: a compendium . Circ. Res. 2016 , 118 , 1703 – 1705 . 

  3. Viester , L. , Verhagen , E. A. , Oude Hengel , K. M. , Koppes , L. L. et?al., The relation between body mass index and musculoskeletal symptoms in the working population . BMC Musculoskelet Disord 2013 , 14 , 238 . 

  4. WHO , Obesity and overweight . Fact sheet Number 311. World Health Organization, Geneva, Switzerland. http://www.who.int/mediacentre/factsheets/fs311/en/. 2015 . 

  5. Vernarelli , J. A. , Mitchell , D. C. , Rolls , B. J. , Hartman , T. J. , Dietary energy density is associated with obesity and other biomarkers of chronic disease in US adults . Eur. J. Nutr. 2015 , 54 , 59 – 65 . 

  6. He , X. , Marco , M. L. , Slupsky , C. M. , Emerging aspects of food and nutrition on gut microbiota . J. Agric. Food Chem. 2013 , 61 , 9559 – 9574 . 

  7. Everard , A. , Lazarevic , V. , Gaia , N. , Johansson , M. et?al., Microbiome of prebiotic‐treated mice reveals novel targets involved in host response during obesity . ISME J . 2014 , 8 , 2116 – 2130 . 

  8. Daniel , H. , Gholami , A. M. , Berry , D. , Desmarchelier , C. et?al., High‐fat diet alters gut microbiota physiology in mice . ISME J . 2013 , 8 , 295 – 308 . 

  9. Sonnenburg , J. L. , Backhed , F. , Diet‐microbiota interactions as moderators of human metabolism . Nature 2016 , 535 , 56 – 64 . 

  10. Slavin , J. , Fiber and prebiotics: mechanisms and health benefits . Nutrients 2013 , 5 , 1417 – 1435 . 

  11. Keenan , M. J. , Zhou , J. , Hegsted , M. , Pelkman , C. et?al., Role of resistant starch in improving gut health, adiposity, and insulin resistance . Adv. Nutr. 2015 , 6 , 198 – 205 . 

  12. Luhovyy , B. L. , Mollard , R. C. , Yurchenko , S. , Nunez , M. F. et?al., The effects of whole grain high‐amylose maize flour as a source of resistant starch on blood glucose, satiety, and food intake in young men . J. Food Sci. 2014 , 79 , H2550 ‐ H2556 . 

  13. Maki , K. C. , Pelkman , C. L. , Finocchiaro , E. T. , Kelley , K. M. et?al., Resistant starch from high‐amylose maize increases insulin sensitivity in overweight and obese men . J. Nutr. 2012 , 142 , 717 – 723 . 

  14. McOrist , A. L. , Miller , R. B. , Bird , A. R. , Keogh , J. B. et?al., Fecal butyrate levels vary widely among individuals but are usually increased by a diet high in resistant starch . J. Nutr. 2011 , 141 , 883 – 889 . 

  15. Vaziri , N. D. , Liu , S. M. , Lau , W. L. , Khazaeli , M. et?al., High amylose resistant starch diet ameliorates oxidative stress, inflammation, and progression of chronic kidney disease . PloS One 2014 , 9 , e114881 . 

  16. Zhou , J. , Keenan , M. J. , Fernandez‐Kim , S. O. , Pistell , P. J. et?al., Dietary resistant starch improves selected brain and behavioral functions in adult and aged rodents . Mol. Nutr. Food Res. 2013 , 57 , 2071 – 2074 . 

  17. Threapleton , D. E. , Greenwood , D. C. , Evans , C. E. , Cleghorn , C. L. et?al., Dietary fibre intake and risk of cardiovascular disease: systematic review and meta‐analysis . BMJ 2013 , 347 , f6879 . 

  18. The InterAct Consortium , Dietary fibre and incidence of type 2 diabetes in eight European countries: the EPIC‐InterAct Study and a meta‐analysis of prospective studies . Diabetologia 2015 , 58 , 1394 – 1408 . 

  19. Livak , K. J. , Schmittgen , T. D. , Analysis of relative gene expression data using real‐time quantitative PCR and the 2(‐Delta Delta C(T)) Method . Methods 2001 , 25 , 402 – 408 . 

  20. O'Sullivan , A. , He , X. , McNiven , E. M. , Haggarty , N. W. et?al., Early diet impacts infant rhesus gut microbiome, immunity, and metabolism . J. Proteome Res. 2013 , 12 , 2833 – 2845 . 

  21. Weljie , A. M. , Newton , J. , Mercier , P. , Carlson , E. et?al., Targeted profiling: quantitative analysis of 1H NMR metabolomics data . Anal. Chem. 2006 , 78 , 4430 – 4442 . 

  22. Slupsky , C. M. , Rankin , K. N. , Wagner , J. , Fu , H. et?al., Investigations of the effects of gender, diurnal variation, and age in human urinary metabolomic profiles . Anal. Chem. 2007 , 79 , 6995 – 7004 . 

  23. Smilowitz , J. T. , O'Sullivan , A. , Barile , D. , German , J. B. et?al., The human milk metabolome reveals diverse oligosaccharide profiles . J. Nutr. 2013 , 143 , 1709 – 1718 . 

  24. Hsieh , Y. H. , Peterson , C. M. , Raggio , A. , Keenan , M. J. et?al., Impact of different fecal processing methods on assessments of bacterial diversity in the human intestine . Front. Microbiol. 2016 , 7 , 1643 . 

  25. Caporaso , J. G. , Kuczynski , J. , Stombaugh , J. , Bittinger , K. et?al., QIIME allows analysis of high‐throughput community sequencing data . Nat. Methods 2010 , 7 , 335 – 336 . 

  26. Edgar , R. C. , Search and clustering orders of magnitude faster than BLAST. Bioinformatics 2010 , 26 , 2460 – 2461 . 

  27. DeSantis , T. Z. , Hugenholtz , P. , Larsen , N. , Rojas , M. et?al., Greengenes, a chimera‐checked 16S rRNA gene database and workbench compatible with ARB . Appl. Environ. Microbiol. 2006 , 72 , 5069 – 5072 . 

  28. Paulson , J. N. , Stine , O. C. , Bravo , H. C. , Pop , M. , Differential abundance analysis for microbial marker‐gene surveys . Nat. Methods 2013 , 10 , 1200 – 1202 . 

  29. Lozupone , C. , Lladser , M. E. , Knights , D. , Stombaugh , J. et?al., UniFrac: an effective distance metric for microbial community comparison . ISME J . 2011 , 5 , 169 – 172 . 

  30. Shannon , P. , Markiel , A. , Ozier , O. , Baliga , N. S. et?al., Cytoscape: a software environment for integrated models of biomolecular interaction networks . Genome Res . 2003 , 13 , 2498 – 2504 . 

  31. Segata , N. , Izard , J. , Waldron , L. , Gevers , D. et?al., Metagenomic biomarker discovery and explanation . Genome Biol . 2011 , 12 , R60 . 

  32. Kellow , N. J. , Coughlan , M. T. , Reid , C. M. , Metabolic benefits of dietary prebiotics in human subjects: a systematic review of randomised controlled trials . Br. J. Nutr. 2014 , 111 , 1147 – 1161 . 

  33. Zhou , J. , Hegsted , M. , McCutcheon , K. L. , Keenan , M. J. et?al., Peptide YY and proglucagon mRNA expression patterns and regulation in the gut . Obesity (Silver Spring) 2006 , 14 , 683 – 689 . 

  34. Zhou , J. , Keenan , M. J. , Keller , J. , Fernandez‐Kim , S. O. et?al., Tolerance, fermentation, and cytokine expression in healthy aged male C57BL/6J mice fed resistant starch . Mol. Nutr. Food Res. 2012 , 56 , 515 – 518 . 

  35. Zhou , J. , Martin , R. J. , Tulley , R. T. , Raggio , A. M. et?al., Dietary resistant starch upregulates total GLP‐1 and PYY in a sustained day‐long manner through fermentation in rodents . Am. J. Physiol. Endocrinol. Metab. 2008 , 295 , E1160 – E1166 . 

  36. Naitoh , R. , Miyawaki , K. , Harada , N. , Mizunoya , W. et?al., Inhibition of GIP signaling modulates adiponectin levels under high‐fat diet in mice . Biochem. Biophys. Res. Commun. 2008 , 376 , 21 – 25 . 

  37. Shimada , M. , Mochizuki , K. , Goda , T. , Dietary resistant starch reduces levels of glucose‐dependent insulinotropic polypeptide mRNA along the jejunum‐ileum in both normal and type 2 diabetic rats . Biosci. Biotechnol. Biochem. 2008 , 72 , 2206 – 2209 . 

  38. Shimotoyodome , A. , Suzuki , J. , Fukuoka , D. , Tokimitsu , I. et?al., RS4‐type resistant starch prevents high‐fat diet‐induced obesity via increased hepatic fatty acid oxidation and decreased postprandial GIP in C57BL/6J mice . Am. J. Physiol. Endocrinol. Metab. 2010 , 298 , E652 – E662 . 

  39. Pyra , K. A. , Saha , D. C. , Reimer , R. A. , Prebiotic fiber increases hepatic acetyl CoA carboxylase phosphorylation and suppresses glucose‐dependent insulinotropic polypeptide secretion more effectively when used with metformin in obese rats . J. Nutr. 2012 , 142 , 213 – 220 . 

  40. Fantuzzi , G. , Adiponectin in inflammatory and immune‐mediated diseases . Cytokine 2013 , 64 , 1 – 10 . 

  41. Lee , B. , Shao , J. , Adiponectin and energy homeostasis . Rev. Endocr. Metab. Disord. 2014 , 15 , 149 – 156 . 

  42. Turer , A. T. , Scherer , P. E. , Adiponectin: mechanistic insights and clinical implications . Diabetologia 2012 , 55 , 2319 – 2326 . 

  43. Kubota , N. , Yano , W. , Kubota , T. , Yamauchi , T. et?al., Adiponectin stimulates AMP‐activated protein kinase in the hypothalamus and increases food intake . Cell Metab . 2007 , 6 , 55 – 68 . 

  44. Higgins , J. A. , Resistant starch and energy balance: impact on weight loss and maintenance . Crit. Rev. Food Sci. Nutr. 2014 , 54 , 1158 – 1166 . 

  45. Charrier , J. A. , Martin , R. J. , McCutcheon , K. L. , Raggio , A. M. et?al., High fat diet partially attenuates fermentation responses in rats fed resistant starch from high‐amylose maize . Obesity (Silver Spring) 2013 , 21 , 2350 – 2355 . 

  46. Awazawa , M. , Ueki , K. , Inabe , K. , Yamauchi , T. et?al., Adiponectin enhances insulin sensitivity by increasing hepatic IRS‐2 expression via a macrophage‐derived IL‐6‐dependent pathway . Cell Metab . 2011 , 13 , 401 – 412 . 

  47. Neyrinck , A. M. , Possemiers , S. , Druart , C. , Van de Wiele , T. et?al., Prebiotic effects of wheat arabinoxylan related to the increase in Bifidobacteria, Roseburia and Bacteroides/Prevotella in diet‐induced obese mice . PloS One 2011 , 6 , e20944 . 

  48. Cani , P. D. , Possemiers , S. , Van de Wiele , T. , Guiot , Y. et?al., Changes in gut microbiota control inflammation in obese mice through a mechanism involving GLP‐2‐driven improvement of gut permeability . Gut 2009 , 58 , 1091 – 1103 . 

  49. Giles , D. A. , Moreno‐Fernandez , M. E. , Divanovic , S. , IL‐17 axis driven inflammation in non‐alcoholic fatty liver disease progression . Curr. Drug Targets 2015 , 16 , 1315 – 1323 . 

  50. Lynch , C. J. , Adams , S. H. , Branched‐chain amino acids in metabolic signalling and insulin resistance . Nat. Rev. Endocrinol. 2014 , 10 , 723 – 736 . 

  51. Weng , L. , Quinlivan , E. , Gong , Y. , Beitelshees , A. L. et?al., Association of branched and aromatic amino acids levels with metabolic syndrome and impaired fasting glucose in hypertensive patients . Metab. Syndr. Relat. Disord. 2015 , 13 , 195 – 202 . 

  52. Lobley , G. E. , Holtrop , G. , Bremner , D. M. , Calder , A. G. et?al., Impact of short term consumption of diets high in either non‐starch polysaccharides or resistant starch in comparison with moderate weight loss on indices of insulin sensitivity in subjects with metabolic syndrome . Nutrients 2013 , 5 , 2144 – 2172 . 

  53. Ingerslev , A. K. , Theil , P. K. , Hedemann , M. S. , Laerke , H. N. et?al., Resistant starch and arabinoxylan augment SCFA absorption, but affect postprandial glucose and insulin responses differently . Br. J. Nutr. 2014 , 111 , 1564 – 1576 . 

  54. Hald , S. , Schioldan , A. G. , Moore , M. E. , Dige , A. et?al., Effects of arabinoxylan and resistant starch on intestinal microbiota and short‐chain fatty acids in subjects with metabolic syndrome: a randomised crossover study . PloS One 2016 , 11 , e0159223 . 

  55. Kieffer , D. A. , Piccolo , B. D. , Marco , M. L. , Kim , E. B. et?al., Mice fed a high‐fat diet supplemented with resistant starch display marked shifts in the liver metabolome concurrent with altered gut bacteria . J. Nutr. 2016 . 

  56. Schwiertz , A. , Taras , D. , Schafer , K. , Beijer , S. et?al., Microbiota and SCFA in lean and overweight healthy subjects . Obesity (Silver Spring) 2010 , 18 , 190 – 195 . 

  57. Teixeira , T. F. , Grzeskowiak , L. , Franceschini , S. C. , Bressan , J. et?al., Higher level of faecal SCFA in women correlates with metabolic syndrome risk factors . Br. J. Nutr. 2013 , 109 , 914 – 919 . 

  58. Salazar , N. , Dewulf , E. M. , Neyrinck , A. M. , Bindels , L. B. et?al., Inulin‐type fructans modulate intestinal Bifidobacterium species populations and decrease fecal short‐chain fatty acids in obese women . Clin. Nutr. 2015 , 34 , 501 – 507 . 

  59. Kovatcheva‐Datchary , P. , Nilsson , A. , Akrami , R. , Lee , Y. S. et?al., Dietary fiber‐induced improvement in glucose metabolism is associated with increased abundance of Prevotella . Cell Metab . 2015 , 22 , 971 – 982 . 

  60. Foley , M. H. , Cockburn , D. W. , Koropatkin , N. M. , The Sus operon: a model system for starch uptake by the human gut Bacteroidetes . Cell Mol. Life Sci. 2016 , 73 , 2603 – 2617 . 

  61. Tachon , S. , Zhou , J. , Keenan , M. , Martin , R. et?al., The intestinal microbiota in aged mice is modulated by dietary resistant starch and correlated with improvements in host responses . FEMS Microbiol. Ecol. 2013 , 83 , 299 – 309 . 

  62. Ravussin , Y. , Koren , O. , Spor , A. , LeDuc , C. et?al., Responses of gut microbiota to diet composition and weight loss in lean and obese mice . Obesity (Silver Spring) 2012 , 20 , 738 – 747 . 

  63. Venkataraman , A. , Sieber , J. R. , Schmidt , A. W. , Waldron , C. et?al., Variable responses of human microbiomes to dietary supplementation with resistant starch . Microbiome 2016 , 4 , 33 . 

  64. Mutsaers , H. A. , Stribos , E. G. , Glorieux , G. , Vanholder , R. et?al., Chronic kidney disease and fibrosis: the role of uremic retention solutes . Front Med. (Lausanne) 2015 , 2 , 60 . 

  65. Sirich , T. L. , Plummer , N. S. , Gardner , C. D. , Hostetter , T. H. et?al., Effect of increasing dietary fiber on plasma levels of colon‐derived solutes in hemodialysis patients . Clin. J. Am. Soc. Nephrol. 2014 , 9 , 1603 – 1610 . 

  66. Kieffer , D. A. , Piccolo , B. D. , Vaziri , N. D. , Liu , S. et?al., Resistant starch alters gut microbiome and metabolomics profiles concurrent with amelioration of chronic kidney disease in rats . Am. J. Physiol. Renal Physiol. 2016 , 310 , F857 – F871 . 

  67. Org , E. , Mehrabian , M. , Lusis , A. J. , Unraveling the environmental and genetic interactions in atherosclerosis: central role of the gut microbiota . Atherosclerosis 2015 , 241 , 387 – 399 . 

  68. Koeth , R. A. , Wang , Z. , Levison , B. S. , Buffa , J. A. et?al., Intestinal microbiota metabolism of L‐carnitine, a nutrient in red meat, promotes atherosclerosis . Nat. Med. 2013 , 19 , 576 – 585 . 

  69. Tang , W. H. , Wang , Z. , Kennedy , D. J. , Wu , Y. et?al., Gut microbiota‐dependent trimethylamine N‐oxide (TMAO) pathway contributes to both development of renal insufficiency and mortality risk in chronic kidney disease . Circ. Res. 2015 , 116 , 448 – 455 . 

  70. Bergeron , N. , Williams , P. T. , Lamendella , R. , Faghihnia , N. et?al., Diets high in resistant starch increase plasma levels of trimethylamine‐N‐oxide, a gut microbiome metabolite associated with CVD risk . Br. J. Nutr. 2016 , 116 , 2020 – 2029 . 

  71. Bindels , L. B. , Segura Munoz , R. R. , Gomes‐Neto , J. C. , Mutemberezi , V. et?al., Resistant starch can improve insulin sensitivity independently of the gut microbiota . Microbiome 2017 , 5 , 12 . 

관련 콘텐츠

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로