$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Performance of Electrochemical Cell to Produce Acid and Alkali for nCaCO3 Production Using Waste Inorganics

Journal of the Electrochemical Society : JES, v.164 no.13, 2017년, pp.F1286 - F1293  

Iqbal, Muhammad Ibrahim (aDepartment of Clean Energy and Chemical Engineering, University of Science and Technology, 217, Gajeong-ro Yuseong-gu, Daejeon, Korea) ,  Abbas, Syed Asad (aDepartment of Clean Energy and Chemical Engineering, University of Science and Technology, 217, Gajeong-ro Yuseong-gu, Daejeon, Korea) ,  Mehmood, Asad (cEnergy Convergence Research Center, Korea Institute of Science and Technology, Cheongryang, Seoul 136-791, Korea) ,  Kim, Seong-Hoon (bClean Energy Research Center, Korea Institute of Science and Technology, Cheongryang, Seoul 136-791, Korea) ,  Ha, Heung Yong (cEnergy Convergence Research Center, Korea Institute of Science and Technology, Cheongryang, Seoul 136-791, Korea) ,  Jung, Kwang-Deog (aDepartment of Clean Energy and Chemical Engineering, University of Science and Technology, 217, Gajeong-ro Yuseong-gu, Daejeon, Korea)

Abstract AI-Helper 아이콘AI-Helper

If an electrolysis system can produce both HCl for Ca extraction and NaOH for carbonation with low energy consumption, mineralization of waste inorganics becomes an economically feasible approach to mitigate environmental CO2 emissions. For this purpose, NaCl electrolysis system with three compartme...

주제어

참고문헌 (21)

  1. Keith, David W.. Why Capture CO 2 from the Atmosphere?. Science, vol.325, no.5948, 1654-1655.

  2. Karl, Thomas R., Trenberth, Kevin E.. Modern Global Climate Change. Science, vol.302, no.5651, 1719-1723.

  3. Friedlingstein, P., Solomon, S., Plattner, G-K., Knutti, R., Ciais, P., Raupach, M. R.. Long-term climate implications of twenty-first century options for carbon dioxide emission mitigation. Nature climate change, vol.1, no.9, 457-461.

  4. Pachauri R. K. Meyer L. A. , Climate Change 2014: IPCC, Geneva, Switzerland, 151 pp. 2014, (2015). 

  5. Metz O. D. Bert de Coninck Heleen Loos Manuela Meyer Leo (Eds.) Special report on carbon dioxde capture and storage, in, New York (2005). 

  6. Boot-Handford, Matthew E., Abanades, Juan C., Anthony, Edward J., Blunt, Martin J., Brandani, Stefano, Mac Dowell, Niall, Fernández, José R., Ferrari, Maria-Chiara, Gross, Robert, Hallett, Jason P., Haszeldine, R. Stuart, Heptonstall, Philip, Lyngfelt, Anders, Makuch, Zen, Mangano, Enzo, Porter, Richard T. J., Pourkashanian, Mohamed, Rochelle, Gary T., Shah, Nilay, Yao, Joseph G., Fennell, Paul S.. Carbon capture and storage update. Energy & environmental science, vol.7, no.1, 130-189.

  7. Pacala, S., Socolow, R.. Stabilization Wedges: Solving the Climate Problem for the Next 50 Years with Current Technologies. Science, vol.305, no.5686, 968-972.

  8. Aresta, Michele, Dibenedetto, Angela. The contribution of the utilization option to reducing the CO2 atmospheric loading: research needed to overcome existing barriers for a full exploitation of the potential of the CO2 use. Catalysis today, vol.98, no.4, 455-462.

  9. CO 2 Science and The Global CO2 Initiative (2016). 

  10. Arce, Gretta L.A.F., Soares Neto, Turibio G., Ávila, I., Luna, Carlos M.R., Carvalho Jr., João A.. Leaching optimization of mining wastes with lizardite and brucite contents for use in indirect mineral carbonation through the pH swing method. Journal of cleaner production, vol.141, 1324-1336.

  11. Xie, F., Zhang, T.A., Dreisinger, D., Doyle, F.. A critical review on solvent extraction of rare earths from aqueous solutions. Minerals engineering, vol.56, 10-28.

  12. Jo, Hoyong, Lee, Min-Gu, Park, Jinwon, Jung, Kwang-Deog. Preparation of high-purity nano-CaCO3 from steel slag. Energy : technologies, resources, reserves, demands, impact, conservation, management, policy, vol.120, 884-894.

  13. Gilliam, Ryan J., Boggs, Bryan K., Decker, Valentin, Kostowskyj, Michael A., Gorer, Sasha, Albrecht, Thomas A., Way, J. Douglas, Kirk, Donald W., Bard, Allen J.. Low Voltage Electrochemical Process for Direct Carbon Dioxide Sequestration. Journal of the Electrochemical Society : JES, vol.159, no.5, B627-B628.

  14. Gilliam R. J. Decker V. Knott N. A. Kostowskyj M. Boggs B. Farsad K. , Gas diffusion anode and CO2 cathode electrolyte system, in, Google Patents (2011). 

  15. Gilliam R. J. Albrecht T. A. Jalani N. Knott N. A. Decker V. Kostowskyj M. Boggs B. Gorer A. Farsad K. , CO2 utilization in electrochemical systems, in, Google Patents (2013). 

  16. Moussallem, Imad, Jörissen, Jakob, Kunz, Ulrich, Pinnow, Stefan, Turek, Thomas. Chlor-alkali electrolysis with oxygen depolarized cathodes: history, present status and future prospects. Journal of applied electrochemistry, vol.38, no.9, 1177-1194.

  17. Mehmood, A., Jang, E., Lee, N., Jung, K.D., Ha, H.Y.. Development of a compact continuous-flow electrochemical cell for an energy efficient production of alkali. Electrochimica acta, vol.180, 845-851.

  18. Dlugolecki, P., Nymeijer, K., Metz, S., Wessling, M.. Current status of ion exchange membranes for power generation from salinity gradients. Journal of membrane science, vol.319, no.1, 214-222.

  19. Geise, Geoffrey M., Curtis, Andrew J., Hatzell, Marta C., Hickner, Michael A., Logan, Bruce E.. Salt Concentration Differences Alter Membrane Resistance in Reverse Electrodialysis Stacks. Environmental science & technology letters, vol.1, no.1, 36-39.

  20. Slade, S., Campbell, S. A., Ralph, T. R., Walsh, F. C.. Ionic Conductivity of an Extruded Nafion 1100 EW Series of Membranes. Journal of the Electrochemical Society : JES, vol.149, no.12, A1556-.

  21. Wakizoe, Masanobu, Velev, Omourtag A., Srinivasan, Supramaniam. Analysis of proton exchange membrane fuel cell performance with alternate membranes. Electrochimica acta, vol.40, no.3, 335-344.

LOADING...

관련 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로