$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Nanodiamonds suppress the growth of lithium dendrites 원문보기

Nature communications, v.8 no.1, 2017년, pp.336 -   

Cheng, Xin-Bing (A.J. Drexel Nanomaterials Institute, and Department of Materials Science and Engineering, Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104 USA) ,  Zhao, Meng-Qiang (A.J. Drexel Nanomaterials Institute, and Department of Materials Science and Engineering, Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104 USA) ,  Chen, Chi (A.J. Drexel Nanomaterials Institute, and Department of Materials Science and Engineering, Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104 USA) ,  Pentecost, Amanda (A.J. Drexel Nanomaterials Institute, and Department of Materials Science and Engineering, Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104 USA) ,  Maleski, Kathleen (A.J. Drexel Nanomaterials Institute, and Department of Materials Science and Engineering, Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104 USA) ,  Mathis, Tyler (A.J. Drexel Nanomaterials Institute, and Department of Materials Science and Engineering, Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104 USA) ,  Zhang, Xue-Qiang (Department of Chemical Engineering, Beij) ,  Zhang, Qiang ,  Jiang, Jianjun ,  Gogotsi, Yury

Abstract AI-Helper 아이콘AI-Helper

Lithium metal has been regarded as the future anode material for high-energy-density rechargeable batteries due to its favorable combination of negative electrochemical potential and high theoretical capacity. However, uncontrolled lithium deposition during lithium plating/stripping results in low C...

참고문헌 (52)

  1. 1. Ji X Lee KT Nazar LF A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries Nat. Mater. 2009 8 500 506 10.1038/nmat2460 19448613 

  2. 2. Aurbach D McCloskey BD Nazar LF Bruce PG Advances in understanding mechanisms underpinning lithium–air batteries Nat. Energy 2016 1 16128 10.1038/nenergy.2016.128 

  3. 3. Cheng X-B A review of solid electrolyte interphases on lithium metal anode Adv. Sci 2016 3 1500213 10.1002/advs.201500213 

  4. 4. Xu W Lithium metal anodes for rechargeable batteries Energy Environ. Sci. 2014 7 513 537 10.1039/C3EE40795K 

  5. 5. Sun Y Liu N Cui Y Promises and challenges of nanomaterials for lithium-based rechargeable batteries Nat. Energy 2016 1 16071 10.1038/nenergy.2016.71 

  6. 6. Tikekar MD Choudhury S Tu Z Archer LA Design principles for electrolytes and interfaces for stable lithium-metal batteries Nat. Energy 2016 1 16114 10.1038/nenergy.2016.114 

  7. 7. Bai P Li J Brushett FR Bazant MZ Transition of lithium growth mechanisms in liquid electrolytes Energy Environ. Sci. 2016 9 3221 3229 10.1039/C6EE01674J 

  8. 8. Tu Z Nath P Lu Y Tikekar MD Archer LA Nanostructured electrolytes for stable lithium electrodeposition in secondary batteries Accounts Chem. Res 2015 48 2947 2956 10.1021/acs.accounts.5b00427 

  9. 9. Zhang K Lee G-H Park M Li W Kang Y-M Recent developments of the lithium metal anode for rechargeable non-aqueous batteries Adv. Energy Mater 2016 6 1600811 10.1002/aenm.201600811 

  10. 10. Wang D Towards high-safe lithium metal anodes: Suppressing lithium dendrites via tuning surface energy Adv. Sci 2016 3 1600168 

  11. 11. Zheng J Tang M Hu Y-Y Lithium ion pathway within Li 7 La 3 Zr 2 O 12 -polyethylene oxide composite electrolytes Angew. Chem. Int. Ed. 2016 55 12538 12542 10.1002/anie.201607539 

  12. 12. Zhou D SiO 2 hollow nanosphere-based composite solid electrolyte for lithium metal batteries to suppress lithium dendrite growth and enhance cycle life Adv. Energy Mater 2016 6 1502214 10.1002/aenm.201502214 

  13. 13. Yao X All-solid-state lithium batteries with inorganic solid electrolytes: Review of fundamental science Chinese Phys. B 2016 25 018802 10.1088/1674-1056/25/1/018802 

  14. 14. Ding F Dendrite-free lithium deposition via self-healing electrostatic shield mechanism J. Am. Chem. Soc. 2013 135 4450 4456 10.1021/ja312241y 23448508 

  15. 15. Li W The synergetic effect of lithium polysulfide and lithium nitrate to prevent lithium dendrite growth Nat. Commun 2015 6 7436 7444 10.1038/ncomms8436 26081242 

  16. 16. Zhao C-Z Li 2 S 5 -based ternary-salt electrolyte for robust lithium metal anode Energy Storage Mater 2016 3 77 84 10.1016/j.ensm.2016.01.007 

  17. 17. Lu Y Tu Z Archer LA Stable lithium electrodeposition in liquid and nanoporous solid electrolytes Nat. Mater. 2014 13 961 969 10.1038/nmat4041 25108613 

  18. 18. Zu C Breaking down the crystallinity: The path for advanced lithium batteries Adv. Energy Mater 2016 6 1501933 10.1002/aenm.201501933 

  19. 19. Aurbach D Zinigrad E Cohen Y Teller H A short review of failure mechanisms of lithium metal and lithiated graphite anodes in liquid electrolyte solutions Solid State Ionics 2002 148 405 416 10.1016/S0167-2738(02)00080-2 

  20. 20. Wood SM K + reduces lithium dendrite growth by forming a thin, less-resistive solid electrolyte interphase ACS Energy Lett 2016 1 414 419 10.1021/acsenergylett.6b00259 

  21. 21. Lu Y Stable cycling of lithium metal batteries using high transference number electrolytes Adv. Energy Mater 2015 5 1402073 10.1002/aenm.201402073 

  22. 22. Tikekar MD Archer LA Koch DL Stabilizing electrodeposition in elastic solid electrolytes containing immobilized anions Sci. Adv 2016 2 e1600320 10.1126/sciadv.1600320 27453943 

  23. 23. Lin D Layered reduced graphene oxide with nanoscale interlayer gaps as a stable host for lithium metal anodes Nat. Nanotechnol 2016 11 626 632 10.1038/nnano.2016.32 26999479 

  24. 24. Liang Z Polymer nanofiber-guided uniform lithium deposition for battery electrodes Nano Lett. 2015 15 2910 2916 10.1021/nl5046318 25822282 

  25. 25. Zhang R Conductive nanostructured scaffolds render low local current density to inhibit lithium dendrite growth Adv. Mater. 2016 28 2155 2162 10.1002/adma.201504117 26754639 

  26. 26. Cheng X-B Dendrite-free lithium deposition induced by uniformly distributed lithium ions for efficient lithium metal batteries Adv. Mater. 2016 28 2888 2895 10.1002/adma.201506124 26900679 

  27. 27. Zhang R Lithiophilic sites in doped graphene guide uniform lithium nucleation for dendrite-free lithium metal anodes Angew. Chem. Int. Ed. 2017 56 7764 7768 10.1002/anie.201702099 

  28. 28. Yan K Selective deposition and stable encapsulation of lithium through heterogeneous seeded growth Nat. Energy 2016 1 16010 10.1038/nenergy.2016.10 

  29. 29. Petrov I Nickel galvanic coatings co-deposited with fractions of detonation nanodiamond Diam. Relat. Mater. 2006 15 2035 2038 10.1016/j.diamond.2006.08.010 

  30. 30. El Rehim SSA El Wahaab SMA Ibrahim MAM Dankeria MM Electroplating of cobalt from aqueous citrate baths J. Chem. Technol. Biot 1998 73 369 376 10.1002/(SICI)1097-4660(199812)73:4 3.0.CO;2-P 

  31. 31. Shrestha NK Takebe T Saji T Effect of particle size on the co-deposition of diamond with nickel in presence of a redox-active surfactant and mechanical property of the coatings Diam. Relat. Mater. 2006 15 1570 1575 10.1016/j.diamond.2005.12.040 

  32. 32. Medeliene V Stankevic V Bikulcius G The influence of artificial diamond additions on the formation and properties of an electroplated copper metal matrix coating Surf. Coat. Tech. 2003 168 161 168 10.1016/S0257-8972(03)00224-X 

  33. 33. Lee J Talbot JB Simulation of particle incorporation during electrodeposition process: Primary and secondary current distributions J. Electrochem. Soc. 2005 152 C706 C715 10.1149/1.2032429 

  34. 34. Xu H Synthesis and properties of electroless Ni–P–nanometer diamond composite coatings Surface Coatings Technol 2005 191 161 165 10.1016/j.surfcoat.2004.03.045 

  35. 35. Pavlatou EA Stroumbouli M Gyftou P Spyrellis N Hardening effect induced by incorporation of SiC particles in nickel electrodeposits J. Appl. Electrochem. 2006 36 385 394 10.1007/s10800-005-9082-y 

  36. 36. Gurga A Mochalin V Pepe D Picardi C Gogotsi Y Nanoindentation study of the effect of nanodiamond additives on electroless deposition nickel-boride coating Adv. Technol. Mater. Mater. Process. J 2008 10 47 52 

  37. 37. Mochalin VN Gogotsi Y Wet chemistry route to hydrophobic blue fluorescent nanodiamond J. Am. Chem. Soc. 2009 131 4594 4595 10.1021/ja9004514 19290627 

  38. 38. Mochalin VN Shenderova O Ho D Gogotsi Y The properties and applications of nanodiamonds Nat. Nanotechnol 2012 7 11 23 10.1038/nnano.2011.209 

  39. 39. Krueger A Boedeker T Deagglomeration and functionalisation of detonation nanodiamond with long alkyl chains Diam. Relat. Mater. 2008 17 1367 1370 10.1016/j.diamond.2008.01.033 

  40. 40. Cheng XB Peng HJ Huang JQ Wei F Zhang Q Dendrite-free nanostructured anode: Entrapment of lithium in a 3D fibrous matrix for ultra-stable lithium-sulfur batteries Small 2014 10 4257 4263 25074801 

  41. 41. Ozhabes Y Gunceler D Arias TA Stability and surface diffusion at lithium-electrolyte interphases with connections to dendrite suppression arXiv preprint arXiv 2015 1504 05799 

  42. 42. Aogaki R Makino T Morphological instability in nonsteady galvanostatic electrodeposition: I. Effect of surface diffusion of adatoms J. Electrochem. Soc 1984 131 40 46 10.1149/1.2115539 

  43. 43. Aogaki R Makino T Morphological instability in nonsteady galvanostatic electrodeposition: II. Experimental demonstration of the surface diffusion effect of adatoms by means of image analysis J. Electrochem. Soc 1984 131 46 51 10.1149/1.2115540 

  44. 44. Aurbach D Gofer Y Langzam J The correlation between surface chemistry, surface morphology, and cycling efficiency of lithium electrodes in a few polar aprotic systems J. Electrochem. Soc. 1989 136 3198 3205 10.1149/1.2096425 

  45. 45. Liu W Core–shell nanoparticle coating as an interfacial layer for dendrite-free lithium metal anodes ACS Central Sci. 2017 135 140 

  46. 46. Peng Z Volumetric variation confinement: Surface protective structure for high cyclic stability of lithium metal electrodes J. Mater. Chem. A 2016 4 2427 2432 10.1039/C5TA10050J 

  47. 47. Zhang X-Q Fluoroethylene carbonate additives to render uniform Li deposits in lithium metal batteries Adv. Funct. Mater. 2017 27 1605989 10.1002/adfm.201605989 

  48. 48. Cheng X-B Implantable solid electrolyte interphase in lithium-metal batteries Chem 2017 2 258 270 10.1016/j.chempr.2017.01.003 

  49. 49. Kresse G Hafner J Ab initio molecular-dynamics simulation of the liquid-metal/amorphous-semiconductor transition in germanium Phys. Rev. B 1994 49 14251 14269 10.1103/PhysRevB.49.14251 

  50. 50. Perdew JP Burke K Ernzerhof M Generalized gradient approximation made simple Phys. Rev. Lett. 1996 77 3865 3868 10.1103/PhysRevLett.77.3865 10062328 

  51. 51. Klimeš J Bowler DR Michaelides A Van der waals density functionals applied to solids Phys. Rev. B 2011 83 195131 10.1103/PhysRevB.83.195131 

  52. 52. Henkelman G Uberuaga BP Jónsson H A climbing image nudged elastic band method for finding saddle points and minimum energy paths J. Chem. Phys. 2000 113 9901 9904 10.1063/1.1329672 

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로