$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Conductive Cellulose Composites with Low Percolation Threshold for 3D Printed Electronics 원문보기

Scientific reports, v.7, 2017년, pp.3246 - 3246  

Park, Jae Sung (Stretchable Device Laboratory, School of Mechatronic Systems Engineering, Simon Fraser University, Burnaby, BC, Canada) ,  Kim, Taeil (Stretchable Device Laboratory, School of Mechatronic Systems Engineering, Simon Fraser University, Burnaby, BC, Canada) ,  Kim, Woo Soo (Stretchable Device Laboratory, School of Mechatronic Systems Engineering, Simon Fraser University, Burnaby, BC, Canada. woosook@sfu.ca)

Abstract AI-Helper 아이콘AI-Helper

We are reporting a 3D printable composite paste having strong thixotropic rheology. The composite has been designed and investigated with highly conductive silver nanowires. The optimized electrical percolation threshold from both simulation and experiment is shown from 0.7 vol. % of silver n...

참고문헌 (65)

  1. 1. Xu W Electrically conductive silver nanowires-filled methylcellulose composite transparent films with high mechanical properties Materials Letters 2015 152 173 176 10.1016/j.matlet.2015.03.111 

  2. 2. White SI Electrical Percolation Behavior in Silver Nanowire-Polystyrene Composites: Simulation and Experiment Adv. Funct. Mater. Advanced Functional Materials 2010 20 2709 2716 10.1002/adfm.201000451 

  3. 3. Inui, T. et al . High-dielectric paper composite consisting of cellulose nanofiber and silver nanowire. 14th IEEE International Conference on Nanotechnology doi:10.1109/nano.2014.6967965 (2014). 

  4. 4. Sun Y Mayers B Herricks T Xia Y Polyol Synthesis of Uniform Silver Nanowires: A Plausible Growth Mechanism and the Supporting Evidence Nano Letters Nano Lett 2003 3 955 960 10.1021/nl034312m 

  5. 5. Athreya SR Kalaitzidou K Das S Processing and characterization of a carbon black-filled electrically conductive Nylon-12 nanocomposite produced by selective laser sintering Materials Science and Engineering: A 2010 527 2637 2642 10.1016/j.msea.2009.12.028 

  6. 6. Ma PC Kim J-K Tang BZ Effects of silane functionalization on the properties of carbon nanotube/epoxy nanocomposites Composites Science and Technology 2007 67 2965 2972 10.1016/j.compscitech.2007.05.006 

  7. 7. Sandler J Development of a dispersion process for carbon nanotubes in an epoxy matrix and the resulting electrical properties Polymer 1999 40 5967 5971 10.1016/S0032-3861(99)00166-4 

  8. 8. Hu N Tunneling effect in a polymer/carbon nanotube nanocomposite strain sensor Acta Materialia 2008 56 2929 2936 10.1016/j.actamat.2008.02.030 

  9. 9. Lonjon A Demont P Dantras E Lacabanne C Low filled conductive P(VDF-TrFE) composites: Influence of silver particles aspect ratio on percolation threshold from spheres to nanowires Journal of Non-Crystalline Solids 2012 358 3074 3078 10.1016/j.jnoncrysol.2012.09.006 

  10. 10. Li J Correlations between Percolation Threshold, Dispersion State, and Aspect Ratio of Carbon Nanotubes Adv. Funct. Mater. Advanced Functional Materials 2007 17 3207 3215 10.1002/adfm.200700065 

  11. 11. Koysuren O Yesil S Bayram G Effect of composite preparation techniques on electrical and mechanical properties and morphology of nylon 6 based conductive polymer composites Journal of Applied Polymer Science J. Appl. Polym. Sci. 2006 102 2520 2526 10.1002/app.24654 

  12. 12. Hawkins, D. M. S. Thesis Dissertation. (Dept. of Chem., Rochester Institute of Technology: Rochester, NY, 1999). 

  13. 13. Edali M Esmail MN Vatistas GH Rheological properties of high concentrations of carboxymethyl cellulose solutions Journal of Applied Polymer Science J. Appl. Polym. Sci. 2001 79 1787 1801 10.1002/1097-4628(20010307)79:10 3.0.CO;2-2 

  14. 14. Benchabane A Bekkour K Rheological properties of carboxymethyl cellulose (CMC) solutions Colloid Polym Sci Colloid and Polymer Science 2008 286 1173 1180 10.1007/s00396-008-1882-2 

  15. 15. Jeong S Natural cellulose as binder for lithium battery electrodes Journal of Power Sources 2012 199 331 335 10.1016/j.jpowsour.2011.09.102 

  16. 16. Buqa H Study of styrene butadiene rubber and sodium methyl cellulose as binder for negative electrodes in lithium-ion batteries Journal of Power Sources 2006 161 617 622 10.1016/j.jpowsour.2006.03.073 

  17. 17. Kim G Use of natural binders and ionic liquid electrolytes for greener and safer lithium-ion batteries Journal of Power Sources 2011 196 2187 2194 10.1016/j.jpowsour.2010.09.080 

  18. 18. Leigh SJ Low-Cost Conductive Composite Material for 3D Printing of Electronic Sensors PLoS ONE 2012 7 1 6 

  19. 19. Sun K 3D Printing of Interdigitated Li-Ion Microbattery Architectures Adv. Mater. Advanced Materials 2013 25 4539 4543 10.1002/adma.201301036 23776158 

  20. 20. Fu K Graphene Oxide-Based Electrode Inks for 3D-Printed Lithium-Ion Batteries Adv. Mater. Advanced Materials 2016 28 2587 2594 10.1002/adma.201505391 26833897 

  21. 21. Markstedt K 3D Bioprinting Human Chondrocytes with Nanocellulose–Alginate Bioink for Cartilage Tissue Engineering Applications Biomacromolecules 2015 16 1489 1496 10.1021/acs.biomac.5b00188 25806996 

  22. 22. Moteleb MMA Electrical conductance of some cellulose derivatives Polymer Bulletin 1992 28 689 695 10.1007/BF00295974 

  23. 23. Giancoli, D. C. Physics for scientists & engineers with modern physics. (Prentice Hall, 1984). 

  24. 24. Yabuuchi N Electrochemical Properties of LiCoO2 Electrodes with Latex Binders on High-Voltage Exposure Journal of the Electrochemical Society 2015 162 538 544 10.1149/2.0151504jes 

  25. 25. Johner N Grimaldi C Balberg I Ryser P Transport exponent in a three-dimensional continuum tunneling-percolation model Phys. Rev. B Physical Review B 2008 77 174204 10.1103/PhysRevB.77.174204 

  26. 26. Fesenko, O. & Yatsenko, L. P. Nanocomposites, Nanophotonics, Nanobiotechnology, and Applications: Selected Proceedings of the Second FP7 Conference and International Summer School Nanotechnology: From Fundamental Research to Innovations, August 25–September 1, 2013, Bukovel, Ukraine. 

  27. 27. Oskouyi A Sundararaj V Tunneling p Conductivity and Piezoresistivity of Composites Containing Randomly Dispersed Conductive Nano-Platelets. Materials 2014 7 2501 2521 10.3390/ma7042501 

  28. 28. Lichaofeng E Ningxie E Zhong J Carbon Nanofibers and Their Composites: A Review of Synthesizing, Properties and Applications Materials 2014 7 3919 3945 10.3390/ma7053919 

  29. 29. Langley D Flexible transparent conductive materials based on silver nanowire networks: a review Nanotechnology 2013 24 452001 10.1088/0957-4484/24/45/452001 24121527 

  30. 30. Gelves GA Lin B Sundararaj U Haber JA Low Electrical Percolation Threshold of Silver and Copper Nanowires in Polystyrene Composites Adv. Funct. Mater. Advanced Functional Materials 2006 16 2423 2430 10.1002/adfm.200600336 

  31. 31. Nitta N Wu F Lee JT Yushin G Li-ion battery materials: present and future Materials Today 2015 18 252 264 10.1016/j.mattod.2014.10.040 

  32. 32. Sun C Improved high-rate charge/discharge performances of LiFePO4/C via V-doping Journal of Power Sources 2009 193 841 845 10.1016/j.jpowsour.2009.03.061 

  33. 33. Chung S-Y Bloking JT Chiang Y-M Electronically conductive phospho-olivines as lithium storage electrodes Nature Materials Nat Mater 2002 1 123 128 10.1038/nmat732 12618828 

  34. 34. Chen, C. H. et al . ChemInform Abstract: Studies of Mg-Substituted Li4-xMgxTi5O12 Spinel Electrodes (0 ≤ x ≤ 1) for Lithium Batteries. ChemInform 32 (2001). 

  35. 35. Armand, M., Gauthier, M., Magnan, J.-F. & Ravet, N. Method for Synthesis of Carbon-Coated Redox Materials with Controlled Size. (2009). 

  36. 36. Wu L Effect of Particle Size and Agglomeration of TiO 2 on Synthesis and Electrochemical Properties of Li 4 Ti 5 O 12 Transactions of Nonferrous Metals Society of China 2007 17 s117 s121 

  37. 37. Li J Lithium Ion Cell Performance Enhancement Using Aqueous LiFePO4 Cathode Dispersions and Polyethyleneimine Dispersant Journal of the Electrochemical Society 2012 160 201 206 10.1149/2.037302jes 

  38. 38. Sun C Improved high-rate charge/discharge performances of LiFePO4/C via V-doping Journal of Power Sources 2009 193 841 845 10.1016/j.jpowsour.2009.03.061 

  39. 39. Ober TJ Foresti D Lewis JA Active mixing of complex fluids at the microscale Proceedings of the National Academy of Sciences Proc Natl Acad Sci USA 2015 112 12293 12298 10.1073/pnas.1509224112 

  40. 40. Viscosity C & Conversion Tables. Available at: http://bascousa.com/images/advisors/407 condensed.pdf (Accessed: 6th September 2016). 

  41. 41. Lee J-K Lee Y-J Chae W-S Sung Y-M Enhanced ionic conductivity in PEO-LiClO4 hybrid electrolytes by structural modification J Electroceram Journal of Electroceramics 2006 17 941 944 10.1007/s10832-006-7672-7 

  42. 42. Liu D Characterizations of a branched ester-type lithium imide in poly(ethylene oxide)-based polymer electrolytes Solid State Ionics 2004 167 131 136 10.1016/j.ssi.2004.01.003 

  43. 43. Agrawal RC Pandey GP Solid polymer electrolytes: materials designing and all-solid-state battery applications: an overview Journal of Physics D: Applied Physics J. Phys. D: Appl. Phys. 2008 41 223001 10.1088/0022-3727/41/22/223001 

  44. 44. Croce F Appetecchi GB Persi L Scrosati B Nanocomposite polymer electrolytes for lithium batteries Nature. 1998 394 456 458 10.1038/28818 

  45. 45. Scrosati B Croce F Persi L Impedance Spectroscopy Study of PEO-Based Nanocomposite Polymer Electrolytes Journal of The Electrochemical Society J. Electrochem. Soc. 2000 147 1718 10.1149/1.1393423 

  46. 46. Li X Enhanced ionic conductivity of poly(ethylene oxide) (PEO) electrolyte by adding mesoporous molecular sieve LiAlSBA J Solid State Electrochem Journal of Solid State Electrochemistry 2005 9 609 615 10.1007/s10008-004-0613-y 

  47. 47. Ali TM Padmanathan N Selladurai S Structural, conductivity, and dielectric characterization of PEO–PEG blend composite polymer electrolyte dispersed with TiO2 nanoparticles Ionics 2013 19 1115 1123 10.1007/s11581-012-0842-5 

  48. 48. Li Y-H A novel polymer electrolyte with improved high-temperature-tolerance up to 170 °C for high-temperature lithium-ion batteries Journal of Power Sources 2013 244 234 239 10.1016/j.jpowsour.2013.01.148 

  49. 49. Lin C Hung C Venkateswarlu M Hwang B Influence of TiO2 nano-particles on the transport properties of composite polymer electrolyte for lithium-ion batteries Journal of Power Sources 2005 146 397 401 10.1016/j.jpowsour.2005.03.028 

  50. 50. Jaiswal A Nanoscale LiFePO 4 and Li 4 Ti 5 O 12 for High Rate Li-Ion Batteries Journal of The Electrochemical Society. 2009 156 1041 1046 10.1149/1.3223987 

  51. 51. Zaghib K Safe and fast-charging Li-ion battery with long shelf life for power applications Journal of Power Sources 2011 196 3949 3954 10.1016/j.jpowsour.2010.11.093 

  52. 52. Yang C-C Hu H-C Lin S Chien W-C Electrochemical performance of V-doped spinel Li4Ti5O12/C composite anode in Li-half and Li4Ti5O12/LiFePO4-full cell Journal of Power Sources 2014 258 424 433 10.1016/j.jpowsour.2014.01.130 

  53. 53. Akter T Kim WS Reversibly Stretchable Transparent Conductive Coatings of Spray-Deposited Silver Nanowires. ACS Appl Mater. Interfaces ACS Applied Materials & Interfaces 2012 4 1855 1859 10.1021/am300058j 22471630 

  54. 54. Langley DP Metallic nanowire networks: effects of thermal annealing on electrical resistance Nanoscale 2014 6 13535 13543 10.1039/C4NR04151H 25267592 

  55. 55. De S Silver Nanowire Networks as Flexible, Transparent, Conducting Films: Extremely High DC to Optical Conductivity Ratios ACS Nano 2009 3 1767 1774 10.1021/nn900348c 19552383 

  56. 56. P. C. The road ahead for 3-D printers. PwC Available at: http://www.pwc.com/us/en/technology-forecast/2014/3d-printing/features/future-3d-printing.html (Accessed: 6th September 2016). 

  57. 57. Gross BC Evaluation of 3D Printing and Its Potential Impact on Biotechnology and the Chemical Sciences Analytical Chemistry Anal. Chem. 2014 86 3240 3253 10.1021/ac403397r 24432804 

  58. 58. Rengier F 3D printing based on imaging data: review of medical applications Int J CARS International Journal of Computer Assisted Radiology and Surgery 2010 5 335 341 10.1007/s11548-010-0476-x 

  59. 59. Thermoplastics: The Best Choice For 3D Printing. Available at: http://www.appliancedesign.com/ext/resources/am/home/files/pdfs/themoplastics.pdf (Accessed: 6th September 2016). 

  60. 60. Bijadi, S. M. S. Thesis Dissertation. (University of Minnesota: Minneapolis, 2014). 

  61. 61. Markstedt K Sundberg J Gatenholm P 3D Bioprinting of Cellulose Structures from an Ionic Liquid 3D Printing and Additive Manufacturing 2014 1 115 121 10.1089/3dp.2014.0004 

  62. 62. Delacourt, C., Poizot, P., Levasseur, S. & Masquelier, C. Size Effects on Carbon-Free LiFePO[sub 4] Powders. Electrochemical and Solid-State Letters Electrochem. Solid-State Lett . 9 (2006). 

  63. 63. Choi K-H Heterolayered, One-Dimensional Nanobuilding Block Mat Batteries Nano Letters Nano Lett 2014 14 5677 5686 10.1021/nl5024029 25226349 

  64. 64. RheoSense, I. Injectability & Viscosity Drug Development Injections and Small Sample at: http://www.rheosense.com/applications/viscosity/drug-injectability (Accessed: 6th September 2016). 

  65. 65. Lux SF M. Low Cost, Environmentally Benign Binders for Lithium-Ion Batteries Journal of The Electrochemical Society J. Electrochem. Soc. 2010 157 320 325 10.1149/1.3291976 

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로