$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

TCA cycle rewiring fosters metabolic adaptation to oxygen restriction in skeletal muscle from rodents and humans 원문보기

Scientific reports, v.7, 2017년, pp.9723 -   

Capitanio, Daniele (Department of Biomedical Sciences for Health, University of Milan, Segrate, (MI) Italy) ,  Fania, Chiara (UO Proteomica Clinica, IRCCS Policlinico San Donato, San Donato Milanese, (MI) Italy) ,  Torretta, Enrica (Department of Biomedical Sciences for Health, University of Milan, Segrate, (MI) Italy) ,  Viganò, Agnese (Department of Biomedical Sciences for Health, University of Milan, Segrate, (MI) Italy) ,  Moriggi, Manuela (CNR-Institute of Bioimaging and Molecular Physiology, Cefalù) ,  Bravatà, Valentina (, (PA) and Segrate, (MI), Italy) ,  Caretti, Anna (CNR-Institute of Bioimaging and Molecular Physiology, Cefalù) ,  Levett, Denny Z. H. (, (PA) and Segrate, (MI), Italy) ,  Grocott, Michael P. W. (Department of Health Sciences, University of Milan, Milan, Italy) ,  Samaja, Michele (Centre for Altitude, Space, and Extreme Environment Medicine, University College London (UCL), Institute of Child Health, University College London, London, UK) ,  Cerretelli, Paolo (Centre for Altitude, Space, and Extreme Environment Medicine, University College London (UCL), Institute of Child Health, University College London, London, UK) ,  Gelfi, Cecilia (Department of Health Sciences, University of Milan, M)

Abstract AI-Helper 아이콘AI-Helper

In mammals, hypoxic stress management is under the control of the Hypoxia Inducible Factors, whose activity depends on the stabilization of their labile α subunit. In particular, the skeletal muscle appears to be able to react to changes in substrates and O2 delivery by tuning its metabolism. ...

참고문헌 (60)

  1. 1. Semenza GL Oxygen sensing, hypoxia-inducible factors, and disease pathophysiology Annual review of pathology 2014 9 47 71 10.1146/annurev-pathol-012513-104720 23937437 

  2. 2. Kaelin WG Jr. Ratcliffe PJ Oxygen sensing by metazoans: the central role of the HIF hydroxylase pathway Molecular cell 2008 30 393 402 10.1016/j.molcel.2008.04.009 18498744 

  3. 3. Appelhoff RJ Differential function of the prolyl hydroxylases PHD1, PHD2, and PHD3 in the regulation of hypoxia-inducible factor The Journal of biological chemistry 2004 279 38458 38465 10.1074/jbc.M406026200 15247232 

  4. 4. Berra E HIF prolyl-hydroxylase 2 is the key oxygen sensor setting low steady-state levels of HIF-1alpha in normoxia The EMBO journal 2003 22 4082 4090 10.1093/emboj/cdg392 12912907 

  5. 5. Epstein AC C. elegans EGL-9 and mammalian homologs define a family of dioxygenases that regulate HIF by prolyl hydroxylation Cell 2001 107 43 54 10.1016/S0092-8674(01)00507-4 11595184 

  6. 6. Fandrey J Gorr TA Gassmann M Regulating cellular oxygen sensing by hydroxylation Cardiovascular research 2006 71 642 651 10.1016/j.cardiores.2006.05.005 16780822 

  7. 7. Siddiq A Aminova LR Ratan RR Hypoxia inducible factor prolyl 4-hydroxylase enzymes: center stage in the battle against hypoxia, metabolic compromise and oxidative stress Neurochemical research 2007 32 931 946 10.1007/s11064-006-9268-7 17342411 

  8. 8. Ferraro E Giammarioli AM Chiandotto S Spoletini I Rosano G Exercise-induced skeletal muscle remodeling and metabolic adaptation: redox signaling and role of autophagy Antioxidants & redox signaling 2014 21 154 176 10.1089/ars.2013.5773 24450966 

  9. 9. Hoppeler H Baum O Lurman G Mueller M Molecular mechanisms of muscle plasticity with exercise Comprehensive Physiology 2011 1 1383 1412 23733647 

  10. 10. Moriggi M Long term bed rest with and without vibration exercise countermeasures: effects on human muscle protein dysregulation Proteomics 2010 10 3756 3774 10.1002/pmic.200900817 20957755 

  11. 11. Salanova M Disuse deterioration of human skeletal muscle challenged by resistive exercise superimposed with vibration: evidence from structural and proteomic analysis FASEB journal: official publication of the Federation of American Societies for Experimental Biology 2014 28 4748 4763 10.1096/fj.14-252825 25122557 

  12. 12. Salanova M Vibration mechanosignals superimposed to resistive exercise result in baseline skeletal muscle transcriptome profiles following chronic disuse in bed rest Scientific reports 2015 5 10.1038/srep17027 26596638 

  13. 13. Carson, J. A., Hardee, J. P. & VanderVeen, B. N. The emerging role of skeletal muscle oxidative metabolism as a biological target and cellular regulator of cancer-induced muscle wasting. Seminars in cell & developmental biology (2015). 

  14. 14. Vigano A Proteins modulation in human skeletal muscle in the early phase of adaptation to hypobaric hypoxia Proteomics 2008 8 4668 4679 10.1002/pmic.200800232 18937252 

  15. 15. Levett DZ Changes in muscle proteomics in the course of the Caudwell Research Expedition to Mt. Everest Proteomics 2015 15 160 171 10.1002/pmic.201400306 25370915 

  16. 16. Levett DZ Design and conduct of Caudwell Xtreme Everest: an observational cohort study of variation in human adaptation to progressive environmental hypoxia BMC medical research methodology 2010 10 10.1186/1471-2288-10-98 20964858 

  17. 17. De Palma S Muscle proteomics reveals novel insights into the pathophysiological mechanisms of collagen VI myopathies Journal of proteome research 2014 13 5022 5030 10.1021/pr500675e 25211533 

  18. 18. De Palma S Changes in muscle cell metabolism and mechanotransduction are associated with myopathic phenotype in a mouse model of collagen VI deficiency PloS one 2013 8 10.1371/journal.pone.0056716 23437220 

  19. 19. Grumati P Autophagy is defective in collagen VI muscular dystrophies, and its reactivation rescues myofiber degeneration Nature medicine 2010 16 1313 1320 10.1038/nm.2247 21037586 

  20. 20. Vigano A Protein modulation in mouse heart under acute and chronic hypoxia Proteomics 2011 11 4202 4217 10.1002/pmic.201000804 21948614 

  21. 21. De Palma S Metabolic modulation induced by chronic hypoxia in rats using a comparative proteomic analysis of skeletal muscle tissue Journal of proteome research 2007 6 1974 1984 10.1021/pr060614o 17391017 

  22. 22. Bianciardi P Chronic in vivo hypoxia in various organs: hypoxia-inducible factor-1alpha and apoptosis Biochemical and biophysical research communications 2006 342 875 880 10.1016/j.bbrc.2006.02.042 16596722 

  23. 23. Palorini R Protein Kinase A Activation Promotes Cancer Cell Resistance to Glucose Starvation and Anoikis PLoS genetics 2016 12 10.1371/journal.pgen.1005931 26978032 

  24. 24. Semenza GL Transcriptional regulation by hypoxia-inducible factor 1 molecular mechanisms of oxygen homeostasis Trends in cardiovascular medicine 1996 6 151 157 10.1016/1050-1738(96)00039-4 21232289 

  25. 25. Semenza GL Hypoxia response elements in the aldolase A, enolase 1, and lactate dehydrogenase A gene promoters contain essential binding sites for hypoxia-inducible factor 1 The Journal of biological chemistry 1996 271 32529 32537 10.1074/jbc.271.51.32529 8955077 

  26. 26. Semenza GL Wang GL A nuclear factor induced by hypoxia via de novo protein synthesis binds to the human erythropoietin gene enhancer at a site required for transcriptional activation Molecular and cellular biology 1992 12 5447 5454 10.1128/MCB.12.12.5447 1448077 

  27. 27. Liang H Ward WF PGC-1alpha: a key regulator of energy metabolism Advances in physiology education 2006 30 145 151 10.1152/advan.00052.2006 17108241 

  28. 28. Zhang H Mitochondrial autophagy is an HIF-1-dependent adaptive metabolic response to hypoxia The Journal of biological chemistry 2008 283 10892 10903 10.1074/jbc.M800102200 18281291 

  29. 29. Baracca A Sgarbi G Padula A Solaini G Glucose plays a main role in human fibroblasts adaptation to hypoxia The international journal of biochemistry & cell biology 2013 45 1356 1365 10.1016/j.biocel.2013.03.013 23538299 

  30. 30. Twig G Fission and selective fusion govern mitochondrial segregation and elimination by autophagy The EMBO journal 2008 27 433 446 10.1038/sj.emboj.7601963 18200046 

  31. 31. Twig G Hyde B Shirihai OS Mitochondrial fusion, fission and autophagy as a quality control axis: the bioenergetic view Biochimica et biophysica acta 2008 1777 1092 1097 10.1016/j.bbabio.2008.05.001 18519024 

  32. 32. Bergeron M Yu AY Solway KE Semenza GL Sharp FR Induction of hypoxia-inducible factor-1 (HIF-1) and its target genes following focal ischaemia in rat brain The European journal of neuroscience 1999 11 4159 4170 10.1046/j.1460-9568.1999.00845.x 10594641 

  33. 33. Kim JW Tchernyshyov I Semenza GL Dang CV HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia Cell metabolism 2006 3 177 185 10.1016/j.cmet.2006.02.002 16517405 

  34. 34. Clanton TL Hypoxia-induced reactive oxygen species formation in skeletal muscle J Appl Physiol (1985) 2007 102 2379 2388 10.1152/japplphysiol.01298.2006 17289907 

  35. 35. Grune T Merker K Sandig G Davies KJ Selective degradation of oxidatively modified protein substrates by the proteasome Biochemical and biophysical research communications 2003 305 709 718 10.1016/S0006-291X(03)00809-X 12763051 

  36. 36. Umanskaya A Genetically enhancing mitochondrial antioxidant activity improves muscle function in aging Proceedings of the National Academy of Sciences of the United States of America 2014 111 15250 15255 10.1073/pnas.1412754111 25288763 

  37. 37. Kanski J Hong SJ Schoneich C Proteomic analysis of protein nitration in aging skeletal muscle and identification of nitrotyrosine-containing sequences in vivo by nanoelectrospray ionization tandem mass spectrometry The Journal of biological chemistry 2005 280 24261 24266 10.1074/jbc.M501773200 15851474 

  38. 38. Hoppeler H Desplanches D Muscle structural modifications in hypoxia International journal of sports medicine 1992 13 Suppl 1 S166 168 10.1055/s-2007-1024628 1483763 

  39. 39. Hoppeler H Howald H Cerretelli P Human muscle structure after exposure to extreme altitude Experientia 1990 46 1185 1187 10.1007/BF01936933 2253720 

  40. 40. Powell CS Jackson RM Mitochondrial complex I, aconitase, and succinate dehydrogenase during hypoxia-reoxygenation: modulation of enzyme activities by MnSOD. American journal of physiology Lung cellular and molecular physiology 2003 285 L189 198 10.1152/ajplung.00253.2002 12665464 

  41. 41. Cantu D Schaack J Patel M Oxidative inactivation of mitochondrial aconitase results in iron and H2O2-mediated neurotoxicity in rat primary mesencephalic cultures PloS one 2009 4 10.1371/journal.pone.0007095 19763183 

  42. 42. West JB Point: the lactate paradox does/does not occur during exercise at high altitude J Appl Physiol (1985) 2007 2398 2399 

  43. 43. Lundby C Saltin B van Hall G The ‘lactate paradox’, evidence for a transient change in the course of acclimatization to severe hypoxia in lowlanders Acta physiologica Scandinavica 2000 170 265 269 10.1046/j.1365-201x.2000.00785.x 11450136 

  44. 44. van Hall G Calbet JA Sondergaard H Saltin B The re-establishment of the normal blood lactate response to exercise in humans after prolonged acclimatization to altitude The Journal of physiology 2001 536 963 975 10.1111/j.1469-7793.2001.00963.x 11691888 

  45. 45. Xu H Zheng X Jia W Yin S Chromatography/Mass Spectrometry-Based Biomarkers in the Field of Obstructive Sleep Apnea Medicine 2015 94 10.1097/MD.0000000000001541 26448002 

  46. 46. Huss JM Levy FH Kelly DP Hypoxia inhibits the peroxisome proliferator-activated receptor alpha/retinoid X receptor gene regulatory pathway in cardiac myocytes: a mechanism for O2-dependent modulation of mitochondrial fatty acid oxidation The Journal of biological chemistry 2001 276 27605 27612 10.1074/jbc.M100277200 11371554 

  47. 47. Bostrom P Hypoxia converts human macrophages into triglyceride-loaded foam cells Arteriosclerosis, thrombosis, and vascular biology 2006 26 1871 1876 10.1161/01.ATV.0000229665.78997.0b 16741148 

  48. 48. Rankin EB Hypoxia-inducible factor 2 regulates hepatic lipid metabolism Molecular and cellular biology 2009 29 4527 4538 10.1128/MCB.00200-09 19528226 

  49. 49. Oliveira GP Dias CM Pelosi P Rocco PR Understanding the mechanisms of glutamine action in critically ill patients Anais da Academia Brasileira de Ciencias 2010 82 417 430 10.1590/S0001-37652010000200018 20563423 

  50. 50. DeBerardinis RJ Beyond aerobic glycolysis: transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis Proceedings of the National Academy of Sciences of the United States of America 2007 104 19345 19350 10.1073/pnas.0709747104 18032601 

  51. 51. Metallo CM Reductive glutamine metabolism by IDH1 mediates lipogenesis under hypoxia Nature 2012 481 380 384 

  52. 52. Wise DR Hypoxia promotes isocitrate dehydrogenase-dependent carboxylation of alpha-ketoglutarate to citrate to support cell growth and viability Proceedings of the National Academy of Sciences of the United States of America 2011 108 19611 19616 10.1073/pnas.1117773108 22106302 

  53. 53. Biolo G Zorat F Antonione R Ciocchi B Muscle glutamine depletion in the intensive care unit The international journal of biochemistry & cell biology 2005 37 2169 2179 10.1016/j.biocel.2005.05.001 16084750 

  54. 54. Meador BM Huey KA Glutamine preserves skeletal muscle force during an inflammatory insult Muscle & nerve 2009 40 1000 1007 10.1002/mus.21430 19705479 

  55. 55. Chamney C Godar M Garrigan E Huey KA Effects of glutamine supplementation on muscle function and stress responses in a mouse model of spinal cord injury Experimental physiology 2013 98 796 806 10.1113/expphysiol.2012.069658 23143993 

  56. 56. Willam C HIF prolyl hydroxylases in the rat; organ distribution and changes in expression following hypoxia and coronary artery ligation Journal of molecular and cellular cardiology 2006 41 68 77 10.1016/j.yjmcc.2006.04.009 16765982 

  57. 57. Connett RJ Honig CR Gayeski TE Brooks GA Defining hypoxia: a systems view of VO2, glycolysis, energetics, and intracellular PO2 J Appl Physiol (1985) 1990 68 833 842 2187852 

  58. 58. Chandel NS Budinger GR Schumacker PT Molecular oxygen modulates cytochrome c oxidase function The Journal of biological chemistry 1996 271 18672 18677 10.1074/jbc.271.31.18672 8702521 

  59. 59. Milano G Corno AF Lippa S Von Segesser LK Samaja M Chronic and intermittent hypoxia induce different degrees of myocardial tolerance to hypoxia-induced dysfunction Exp Biol Med (Maywood) 2002 227 389 397 10.1177/153537020222700604 12037128 

  60. 60. Spinazzi M Casarin A Pertegato V Salviati L Angelini C Assessment of mitochondrial respiratory chain enzymatic activities on tissues and cultured cells Nature protocols 2012 7 1235 1246 10.1038/nprot.2012.058 22653162 

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로