$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

A review on self-assembly in microfluidic devices

Journal of micromechanics and microengineering.: structures, devices, and systems, v.27 no.11, 2017년, pp.113002 -   

Dou, Yingying (Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, People’s Republic of China) ,  Wang, Bingsheng (Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, People’s Republic of China) ,  Jin, Mingliang (Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, People’s Republic of China) ,  Yu, Ying (School of Chemistry, South China Normal University, Guangzhou 510006, People’s Republic of China) ,  Zhou, Guofu (Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, People’s Republic of China) ,  Shui, Lingling (Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, People’s Republic of China)

Abstract AI-Helper 아이콘AI-Helper

Self-assembly is a process that operates over a vast range of length and time scales. Microfluidic technology has been proven to be a powerful tool to manipulate micro- and nano-scale substrates with precise control over size and speed using various fluidic materials and properties. In this review, ...

참고문헌 (106)

  1. [1] Whitesides G M and Grzybowski B 2002 Self-assembly at all scales Science 295 2418–21 10.1126/science.1070821 Self-assembly at all scales Whitesides G M and Grzybowski B Science 295 2002 2418 2421 

  2. [2] Yan Q, Yuan J, Cai Z, Xin Y, Kang Y and Yin Y 2010 Voltage-responsive vesicles based on orthogonal assembly of two homopolymers J. Am. Chem. Soc. 132 9268–70 10.1021/ja1027502 Voltage-responsive vesicles based on orthogonal assembly of two homopolymers Yan Q, Yuan J, Cai Z, Xin Y, Kang Y and Yin Y J. Am. Chem. Soc. 132 2010 9268 9270 

  3. [3] Su B, Abid J P, Fermin D J, Girault H H, Hoffmannova H, Krtil P and Samec Z 2004 Reversible voltage-induced assembly of au nanoparticles at liquid/liquid interfaces J. Am. Chem. Soc. 126 915–9 10.1021/ja0386187 Reversible voltage-induced assembly of au nanoparticles at liquid/liquid interfaces Su B, Abid J P, Fermin D J, Girault H H, Hoffmannova H, Krtil P and Samec Z J. Am. Chem. Soc. 126 2004 915 919 

  4. [4] Moughton A O, Sagawa T, Yin L, Lodge T P and Hillmyer M A 2016 Multicompartment Micelles by aqueous self-assembly of µ-A(BC)n miktobrush terpolymers ACS Omega 1 1027–33 10.1021/acsomega.6b00284 Multicompartment Micelles by aqueous self-assembly of µ-A(BC)n miktobrush terpolymers Moughton A O, Sagawa T, Yin L, Lodge T P and Hillmyer M A ACS Omega 1 2016 1027 1033 

  5. [5] Le Thi Ngoc L, Jin M, Wiedemair J, van den Berg A and Carlen E T 2013 Large area metal nanowire arrays with tunable sub-20 nm nanogaps ACS Nano 7 5223–34 10.1021/nn4009559 Large area metal nanowire arrays with tunable sub-20 nm nanogaps Le Thi Ngoc L, Jin M, Wiedemair J, van den Berg A and Carlen E T ACS Nano 7 2013 5223 5234 

  6. [6] Tang J, Gao B, Geng H, Velev O D, Qin L C and Zhou O 2003 Assembly of 1D nanostructures into sub-micrometer diameter fibrils with controlled and variable length by dielectrophoresis Adv. Mater. 15 1352–5 10.1002/adma.200305086 Assembly of 1D nanostructures into sub-micrometer diameter fibrils with controlled and variable length by dielectrophoresis Tang J, Gao B, Geng H, Velev O D, Qin L C and Zhou O Adv. Mater. 15 2003 1352 1355 

  7. [7] Wang B, Rozynek Z, Fossum J O, Knudsen K D and Yu Y 2012 Guided self-assembly of nanostructured titanium oxide Nanotechnology 23 075706 10.1088/0957-4484/23/7/075706 Guided self-assembly of nanostructured titanium oxide Wang B, Rozynek Z, Fossum J O, Knudsen K D and Yu Y Nanotechnology 0957-4484 23 7 075706 2012 

  8. [8] Evers C H, Luiken J A, Bolhuis P G and Kegel W K 2016 Self-assembly of microcapsules via colloidal bond hybridization and anisotropy Nature 534 364–8 10.1038/nature17956 Self-assembly of microcapsules via colloidal bond hybridization and anisotropy Evers C H, Luiken J A, Bolhuis P G and Kegel W K Nature 534 2016 364 368 

  9. [9] Ma H and Hao J 2011 Ordered patterns and structures via interfacial self-assembly: superlattices, honeycomb structures and coffee rings Chem. Soc. Rev. 40 5457–71 10.1039/c1cs15059f Ordered patterns and structures via interfacial self-assembly: superlattices, honeycomb structures and coffee rings Ma H and Hao J Chem. Soc. Rev. 40 2011 5457 5471 

  10. [10] Abbyad P, Dangla R, Alexandrou A and Baroud C N 2011 Rails and anchors: guiding and trapping droplet microreactors in two dimensions Lab Chip 11 813–21 10.1039/C0LC00104J Rails and anchors: guiding and trapping droplet microreactors in two dimensions Abbyad P, Dangla R, Alexandrou A and Baroud C N Lab Chip 11 2011 813 821 

  11. [11] Dong R and Hao J 2010 Complex fluids of poly(oxyethylene) monoalkyl ether nonionic surfactants Chem. Rev. 110 4978–5022 10.1021/cr9003743 Complex fluids of poly(oxyethylene) monoalkyl ether nonionic surfactants Dong R and Hao J Chem. Rev. 110 2010 4978 5022 

  12. [12] Mark C P, Philip H, Bloom D M and Harvey A F 2003 Building thick photoresist structures from the bottom up J. Micromech. Microeng. 13 380 10.1088/0960-1317/13/3/305 Building thick photoresist structures from the bottom up Mark C P, Philip H, Bloom D M and Harvey A F J. Micromech. Microeng. 0960-1317 13 3 305 2003 380 

  13. [13] Rahimi M, Roberts T F, Armas-Perez J C, Wang X, Bukusoglu E, Abbott N L and de Pablo J J 2015 Nanoparticle self-assembly at the interface of liquid crystal droplets Proc. Natl Acad. Sci. USA 112 5297–302 10.1073/pnas.1422785112 Nanoparticle self-assembly at the interface of liquid crystal droplets Rahimi M, Roberts T F, Armas-Perez J C, Wang X, Bukusoglu E, Abbott N L and de Pablo J J Proc. Natl Acad. Sci. USA 0027-8424 112 2015 5297 5302 

  14. [14] Zang F, Chu S, Gerasopoulos K, Culver J N and Ghodssi R 2017 Biofabrication of Tobacco mosaic virus-nanoscaffolded supercapacitors via temporal capillary microfluidics Nanotechnology 28 265301 10.1088/1361-6528/aa742f Biofabrication of Tobacco mosaic virus-nanoscaffolded supercapacitors via temporal capillary microfluidics Zang F, Chu S, Gerasopoulos K, Culver J N and Ghodssi R Nanotechnology 0957-4484 28 26 265301 2017 

  15. [15] Chung S E, Park W, Shin S, Lee S A and Kwon S 2008 Guided and fluidic self-assembly of microstructures using railed microfluidic channels Nat. Mater. 7 581–7 10.1038/nmat2208 Guided and fluidic self-assembly of microstructures using railed microfluidic channels Chung S E, Park W, Shin S, Lee S A and Kwon S Nat. Mater. 7 2008 581 587 

  16. [16] Wu L Y, Di Carlo D and Lee L P 2008 Microfluidic self-assembly of tumor spheroids for anticancer drug discovery Biomed. Microdevices 10 197–202 10.1007/s10544-007-9125-8 Microfluidic self-assembly of tumor spheroids for anticancer drug discovery Wu L Y, Di Carlo D and Lee L P Biomed. Microdevices 10 2008 197 202 

  17. [17] Maiti P K and Chowdhury D 1998 A microscopic model of gemini surfactants: self-assemblies in water and at ari–water interface J. Chem. Phys. 109 5126–33 10.1063/1.477127 A microscopic model of gemini surfactants: self-assemblies in water and at ari–water interface Maiti P K and Chowdhury D J. Chem. Phys. 109 1998 5126 5133 

  18. [18] Dou Y, Xu H and Hao J 2013 Self-assembly and accurate preparation of Au nanoparticles in the aqueous solution of a peptide A6D and a zwitterionic C14DMAO Soft Matter 9 5572 10.1039/c3sm50444a Self-assembly and accurate preparation of Au nanoparticles in the aqueous solution of a peptide A6D and a zwitterionic C14DMAO Dou Y, Xu H and Hao J Soft Matter 1744-683X 9 2013 5572 

  19. [19] Capretto L, Carugo D, Mazzitelli S, Nastruzzi C and Zhang X 2013 Microfluidic and lab-on-a-chip preparation routes for organic nanoparticles and vesicular systems for nanomedicine applications Adv. Drug Deliv. Rev. 65 1496–532 10.1016/j.addr.2013.08.002 Microfluidic and lab-on-a-chip preparation routes for organic nanoparticles and vesicular systems for nanomedicine applications Capretto L, Carugo D, Mazzitelli S, Nastruzzi C and Zhang X Adv. Drug Deliv. Rev. 0169-409X 65 2013 1496 1532 

  20. [20] Shen B, Ricouvier J, Malloggi F and Tabeling P 2016 Designing colloidal molecules with microfluidics Adv. Sci. 3 1600012 10.1002/advs.201600012 Designing colloidal molecules with microfluidics Shen B, Ricouvier J, Malloggi F and Tabeling P Adv. Sci. 0308-3241 3 2016 1600012 

  21. [21] Kriete B and Pshenichnikov M S 2016 Dynamics of molecular aggregate formation: lab-on-a-chip 2D spectroscopic approach Int. Conf. on Ultrafast Phenomena (Santa Fe, NM: Optical Society of America) p UW4A.19 10.1364/UP.2016.UW4A.19 Dynamics of molecular aggregate formation: lab-on-a-chip 2D spectroscopic approach Kriete B and Pshenichnikov M S Int. Conf. on Ultrafast Phenomena 2016 UW4A.19 

  22. [22] Nikoubashman A 2016 Self-assembly of colloidal micelles in microfluidic channels Soft Matter 13 222–9 10.1039/C6SM00766J Self-assembly of colloidal micelles in microfluidic channels Nikoubashman A Soft Matter 1744-683X 13 2016 222 229 

  23. [23] Liu J, Lan Y, Yu Z, Tan C S, Parker R M, Abell C and Scherman O A 2017 Cucurbit[n]uril-based microcapsules self-assembled within microfluidic droplets: a versatile approach for supramolecular architectures and materials Acc. Chem. Res. 50 208–17 10.1021/acs.accounts.6b00429 Cucurbit[n]uril-based microcapsules self-assembled within microfluidic droplets: a versatile approach for supramolecular architectures and materials Liu J, Lan Y, Yu Z, Tan C S, Parker R M, Abell C and Scherman O A Acc. Chem. Res. 0001-4842 50 2017 208 217 

  24. [24] Krzyszton R, Salem B, Lee D J, Schwake G, Wagner E and Radler J O 2017 Microfluidic self-assembly of folate-targeted monomolecular siRNA-lipid nanoparticles Nanoscale 9 7442–53 10.1039/C7NR01593C Microfluidic self-assembly of folate-targeted monomolecular siRNA-lipid nanoparticles Krzyszton R, Salem B, Lee D J, Schwake G, Wagner E and Radler J O Nanoscale 9 2017 7442 7453 

  25. [25] Guzowski J, Gizynski K, Gorecki J and Garstecki P 2016 Microfluidic platform for reproducible self-assembly of chemically communicating droplet networks with predesigned number and type of the communicating compartments Lab Chip 16 764–72 10.1039/C5LC01526J Microfluidic platform for reproducible self-assembly of chemically communicating droplet networks with predesigned number and type of the communicating compartments Guzowski J, Gizynski K, Gorecki J and Garstecki P Lab Chip 16 2016 764 772 

  26. [26] Simon J R, Carroll N J, Rubinstein M, Chilkoti A and Lopez G P 2017 Programming molecular self-assembly of intrinsically disordered proteins containing sequences of low complexity Nat. Chem. 9 509–15 10.1038/nchem.2715 Programming molecular self-assembly of intrinsically disordered proteins containing sequences of low complexity Simon J R, Carroll N J, Rubinstein M, Chilkoti A and Lopez G P Nat. Chem. 9 2017 509 515 

  27. [27] Shui L, Eijkel J and van den Berg A 2007 Multiphase flow in micro- and nanochannels Sensors Actuators B 121 263–76 10.1016/j.snb.2006.09.040 Multiphase flow in micro- and nanochannels Shui L, Eijkel J and van den Berg A Sensors Actuators 0925-4005 121 B 2007 263 276 

  28. [28] Sharp K V and Adrian R J 2004 Transition from laminar to turbulent flow in liquid filled microtubes Exp. Fluids 36 741–7 10.1007/s00348-003-0753-3 Transition from laminar to turbulent flow in liquid filled microtubes Sharp K V and Adrian R J Exp. Fluids 36 2004 741 747 

  29. [29] Sochol R D, Lu A, Lei J, Iwai K, Lee L P and Lin L 2014 Microfluidic bead-based diodes with targeted circular microchannels for low Reynolds number applications Lab Chip 14 1585–94 10.1039/C3LC51069G Microfluidic bead-based diodes with targeted circular microchannels for low Reynolds number applications Sochol R D, Lu A, Lei J, Iwai K, Lee L P and Lin L Lab Chip 14 2014 1585 1594 

  30. [30] Wang G, Yang F, Zhao W and Chen C P 2016 On micro-electrokinetic scalar turbulence in microfluidics at a low Reynolds number Lab Chip 16 1030–8 10.1039/C5LC01541C On micro-electrokinetic scalar turbulence in microfluidics at a low Reynolds number Wang G, Yang F, Zhao W and Chen C P Lab Chip 16 2016 1030 1038 

  31. [31] Shui L, van den Berg A and Eijkel J C 2009 Interfacial tension controlled W/O and O/W 2-phase flows in microchannel Lab Chip 9 795–801 10.1039/B813724B Interfacial tension controlled W/O and O/W 2-phase flows in microchannel Shui L, van den Berg A and Eijkel J C Lab Chip 9 2009 795 801 

  32. [32] Zheng B, Tice J D and Ismagilov R F 2004 Formation of droplets of alternating composition in microfluidic channels and applications to indexing of concentrations in droplet-based assays Anal. Chem. 76 4977–82 10.1021/ac0495743 Formation of droplets of alternating composition in microfluidic channels and applications to indexing of concentrations in droplet-based assays Zheng B, Tice J D and Ismagilov R F Anal. Chem. 76 2004 4977 4982 

  33. [33] Benson B R, Stone H A and Prud’homme R K 2013 An ‘off-the-shelf’ capillary microfluidic device that enables tuning of the droplet breakup regime at constant flow rates Lab Chip 13 4507–11 10.1039/c3lc50804h An ‘off-the-shelf’ capillary microfluidic device that enables tuning of the droplet breakup regime at constant flow rates Benson B R, Stone H A and Prud’homme R K Lab Chip 13 2013 4507 4511 

  34. [34] Jullien M C, Tsang Mui Ching M J, Cohen C, Menetrier L and Tabeling P 2009 Droplet breakup in microfluidic T-junctions at small capillary numbers Phys. Fluids 21 072001 10.1063/1.3170983 Droplet breakup in microfluidic T-junctions at small capillary numbers Jullien M C, Tsang Mui Ching M J, Cohen C, Menetrier L and Tabeling P Phys. Fluids 21 072001 2009 

  35. [35] Leshansky A M and Pismen L M 2009 Breakup of drops in a microfluidic T junction Phys. Fluids 21 023303 10.1063/1.3078515 Breakup of drops in a microfluidic T junction Leshansky A M and Pismen L M Phys. Fluids 21 023303 2009 

  36. [36] Shui L, van den Berg A and Eijkel J C T 2009 Capillary instability, squeezing, and shearing in head-on microfluidic devices J. Appl. Phys. 106 124305 10.1063/1.3268364 Capillary instability, squeezing, and shearing in head-on microfluidic devices Shui L, van den Berg A and Eijkel J C T J. Appl. Phys. 106 124305 2009 

  37. [37] Ushikubo F Y, Birribilli F S, Oliveira D R B and Cunha R L 2014 Y- and T-junction microfluidic devices: effect of fluids and interface properties and operating conditions Microfluid. Nanofluid. 17 711–20 10.1007/s10404-014-1348-4 Y- and T-junction microfluidic devices: effect of fluids and interface properties and operating conditions Ushikubo F Y, Birribilli F S, Oliveira D R B and Cunha R L Microfluid. Nanofluid. 17 2014 711 720 

  38. [38] Jahn A, Vreeland W N, Gaitan M and Locascio L E 2004 Controlled vesicle self-assembly in microfluidic channels with hydrodynamic focusing J. Am. Chem. Soc. 126 2674–5 10.1021/ja0318030 Controlled vesicle self-assembly in microfluidic channels with hydrodynamic focusing Jahn A, Vreeland W N, Gaitan M and Locascio L E J. Am. Chem. Soc. 126 2004 2674 2675 

  39. [39] Maestro A, Deshmukh O S, Mugele F and Langevin D 2015 Interfacial assembly of surfactant-decorated nanoparticles: on the rheological description of a colloidal 2D glass Langmuir 31 6289–97 10.1021/acs.langmuir.5b00632 Interfacial assembly of surfactant-decorated nanoparticles: on the rheological description of a colloidal 2D glass Maestro A, Deshmukh O S, Mugele F and Langevin D Langmuir 31 2015 6289 6297 

  40. [40] Bai S, Debnath S, Gibson K, Schlicht B, Bayne L, Zagnoni M and Ulijn R V 2014 Biocatalytic self-assembly of nanostructured peptide microparticles using droplet microfluidics Small 10 285–93 10.1002/smll.201301333 Biocatalytic self-assembly of nanostructured peptide microparticles using droplet microfluidics Bai S, Debnath S, Gibson K, Schlicht B, Bayne L, Zagnoni M and Ulijn R V Small 1442-8504 10 2014 285 293 

  41. [41] Bartke M, Eickenberg B, Wittbracht F and Hütten A 2015 DNA-mediated stabilization of self-assembling bead monolayers for microfluidic applications Part. Part. Syst. Charact. 32 583–7 10.1002/ppsc.201400093 DNA-mediated stabilization of self-assembling bead monolayers for microfluidic applications Bartke M, Eickenberg B, Wittbracht F and Hütten A Part. Part. Syst. Charact. 0934-0866 32 2015 583 587 

  42. [42] Niu X, Luo D, Chen R, Wang F, Sun X and Dai H 2016 Optical biosensor based on liquid crystal droplets for detection of cholic acid Opt. Commun. 381 286–91 10.1016/j.optcom.2016.07.016 Optical biosensor based on liquid crystal droplets for detection of cholic acid Niu X, Luo D, Chen R, Wang F, Sun X and Dai H Opt. Commun. 0030-4018 381 2016 286 291 

  43. [43] Dufresne E R, Corwin E I, Greenblatt N A, Ashmore J, Wang D Y, Dinsmore A D, Cheng J X, Xie X S, Hutchinson J W and Weitz D A 2003 Flow and fracture in drying nanoparticle suspensions Phys. Rev. Lett. 91 224501 10.1103/PhysRevLett.91.224501 Flow and fracture in drying nanoparticle suspensions Dufresne E R, Corwin E I, Greenblatt N A, Ashmore J, Wang D Y, Dinsmore A D, Cheng J X, Xie X S, Hutchinson J W and Weitz D A Phys. Rev. Lett. 91 224501 2003 

  44. [44] Poulichet V and Garbin V 2015 Ultrafast desorption of colloidal particles from fluid interfaces Proc. Natl Acad. Sci. USA 112 5932–7 10.1073/pnas.1504776112 Ultrafast desorption of colloidal particles from fluid interfaces Poulichet V and Garbin V Proc. Natl Acad. Sci. USA 0027-8424 112 2015 5932 5937 

  45. [45] Hen M, Ronen M, Deitch A, Barbiro-Michaely E, Oren Z, Sukenik C N and Gerber D 2015 An off-the-shelf integrated microfluidic device comprising self-assembled monolayers for protein array experiments Biomicrofluidics 9 054108 10.1063/1.4930982 An off-the-shelf integrated microfluidic device comprising self-assembled monolayers for protein array experiments Hen M, Ronen M, Deitch A, Barbiro-Michaely E, Oren Z, Sukenik C N and Gerber D Biomicrofluidics 9 054108 2015 

  46. [46] Nie Z, Li W, Seo M, Xu S and Kumacheva E 2006 Janus and ternary particles generated by microfluidic synthesis: design, synthesis, and self-assembly J. Am. Chem. Soc. 128 9408–12 10.1021/ja060882n Janus and ternary particles generated by microfluidic synthesis: design, synthesis, and self-assembly Nie Z, Li W, Seo M, Xu S and Kumacheva E J. Am. Chem. Soc. 128 2006 9408 9412 

  47. [47] Minc N, Slovakova M, Dorfman K D, Fütterer C, Bokov P, Bilkova Z, Smadga C, Taverna M and Viovy J-L 2007 Systèmes microfluidiques de particules magnétiques auto-assemblées; application à la séparation d’ADN et à la digestion de protéines La Houille Blanche 51–4 10.1051/lhb:200604007 Systèmes microfluidiques de particules magnétiques auto-assemblées; application à la séparation d’ADN et à la digestion de protéines Minc N, Slovakova M, Dorfman K D, Fütterer C, Bokov P, Bilkova Z, Smadga C, Taverna M and Viovy J-L La Houille Blanche 0018-6368 2007 51 54 

  48. [48] Rida A and Gijs M A 2004 Manipulation of self-assembled structures of magnetic beads for microfluidic mixing and assaying Anal. Chem. 76 6239–46 10.1021/ac049415j Manipulation of self-assembled structures of magnetic beads for microfluidic mixing and assaying Rida A and Gijs M A Anal. Chem. 76 2004 6239 6246 

  49. [49] Cheng Y, Luo X, Tsao C Y, Wu H C, Betz J, Payne G F, Bentley W E and Rubloff G W 2011 Biocompatible multi-address 3D cell assembly in microfluidic devices using spatially programmable gel formation Lab Chip 11 2316–8 10.1039/c1lc20306a Biocompatible multi-address 3D cell assembly in microfluidic devices using spatially programmable gel formation Cheng Y, Luo X, Tsao C Y, Wu H C, Betz J, Payne G F, Bentley W E and Rubloff G W Lab Chip 11 2011 2316 2318 

  50. [50] Dangla R, Kayi S C and Baroud C N 2013 Droplet microfluidics driven by gradients of confinement Proc. Natl Acad. Sci. USA 110 853–8 10.1073/pnas.1209186110 Droplet microfluidics driven by gradients of confinement Dangla R, Kayi S C and Baroud C N Proc. Natl Acad. Sci. USA 0027-8424 110 2013 853 858 

  51. [51] Park W, Lee H, Park H and Kwon S 2009 Sorting directionally oriented microstructures using railed microfluidics Lab Chip 9 2169–75 10.1039/b904153b Sorting directionally oriented microstructures using railed microfluidics Park W, Lee H, Park H and Kwon S Lab Chip 9 2009 2169 2175 

  52. [52] Chung S E, Jung Y and Kwon S 2011 Three-dimensional fluidic self-assembly by axis translation of two-dimensionally fabricated microcomponents in railed microfluidics Small 7 796–803 10.1002/smll.201001806 Three-dimensional fluidic self-assembly by axis translation of two-dimensionally fabricated microcomponents in railed microfluidics Chung S E, Jung Y and Kwon S Small 1442-8504 7 2011 796 803 

  53. [53] Torbensen K and Abou-Hassan A 2015 Easy-to-assemble and adjustable coaxial flow-focusing microfluidic device for generating controllable water/oil/water double emulsions: toward templating giant liposomes with different properties J. Flow Chem. 5 234–40 10.1556/1846.2015.00023 Easy-to-assemble and adjustable coaxial flow-focusing microfluidic device for generating controllable water/oil/water double emulsions: toward templating giant liposomes with different properties Torbensen K and Abou-Hassan A J. Flow Chem. 5 2015 234 240 

  54. [54] Kanai T, Lee D, Shum H C, Shah R K and Weitz D A 2010 Gel-immobilized colloidal crystal shell with enhanced thermal sensitivity at photonic wavelengths Adv. Mater. 22 4998–5002 10.1002/adma.201002055 Gel-immobilized colloidal crystal shell with enhanced thermal sensitivity at photonic wavelengths Kanai T, Lee D, Shum H C, Shah R K and Weitz D A Adv. Mater. 22 2010 4998 5002 

  55. [55] Meng Z J, Wang W, Liang X, Zheng W C, Deng N N, Xie R, Ju X J, Liu Z and Chu L Y 2015 Plug-n-play microfluidic systems from flexible assembly of glass-based flow-control modules Lab Chip 15 1869–78 10.1039/C5LC00132C Plug-n-play microfluidic systems from flexible assembly of glass-based flow-control modules Meng Z J, Wang W, Liang X, Zheng W C, Deng N N, Xie R, Ju X J, Liu Z and Chu L Y Lab Chip 15 2015 1869 1878 

  56. [56] Bell R V, Parkins C C, Young R A, Preuss C M, Stevens M M and Bon S A F 2016 Assembly of emulsion droplets into fibers by microfluidic wet spinning J. Mater. Chem. A 4 813–8 10.1039/C5TA08917D Assembly of emulsion droplets into fibers by microfluidic wet spinning Bell R V, Parkins C C, Young R A, Preuss C M, Stevens M M and Bon S A F J. Mater. Chem. 4 A 2016 813 818 

  57. [57] Chen J, Zhu L, Xie H, Zhang J, Mao Y, Huang Z, Shi B and Chen S 2014 Microfluidic assembly of uniform fluorescent microbeads from quantum-dot-loaded fluorine-containing microemulsion Polymer Int. 63 1953–8 10.1002/pi.4737 Microfluidic assembly of uniform fluorescent microbeads from quantum-dot-loaded fluorine-containing microemulsion Chen J, Zhu L, Xie H, Zhang J, Mao Y, Huang Z, Shi B and Chen S Polymer Int. 1097-0126 63 2014 1953 1958 

  58. [58] Chang Y W, He P, Marquez S M and Cheng Z 2012 Uniform yeast cell assembly via microfluidics Biomicrofluidics 6 24118–9 10.1063/1.4714221 Uniform yeast cell assembly via microfluidics Chang Y W, He P, Marquez S M and Cheng Z Biomicrofluidics 6 2012 24118 24119 

  59. [59] Armbrecht L, Dincer C, Kling A, Horak J, Kieninger J and Urban G 2015 Self-assembled magnetic bead chains for sensitivity enhancement of microfluidic electrochemical biosensor platforms Lab Chip 15 4314–21 10.1039/C5LC00796H Self-assembled magnetic bead chains for sensitivity enhancement of microfluidic electrochemical biosensor platforms Armbrecht L, Dincer C, Kling A, Horak J, Kieninger J and Urban G Lab Chip 15 2015 4314 4321 

  60. [60] Jones S G, Abbasi N, Moon B U and Tsai S S 2016 Microfluidic magnetic self-assembly at liquid-liquid interfaces Soft Matter 12 2668–75 10.1039/C5SM03104D Microfluidic magnetic self-assembly at liquid-liquid interfaces Jones S G, Abbasi N, Moon B U and Tsai S S Soft Matter 1744-683X 12 2016 2668 2675 

  61. [61] Sun T, Huang Q, Shi Q, Wang H, Liu X, Seki M, Nakajima M and Fukuda T 2015 Magnetic assembly of microfluidic spun alginate microfibers for fabricating three-dimensional cell-laden hydrogel constructs Microfluid. Nanofluid. 19 1169–80 10.1007/s10404-015-1633-x Magnetic assembly of microfluidic spun alginate microfibers for fabricating three-dimensional cell-laden hydrogel constructs Sun T, Huang Q, Shi Q, Wang H, Liu X, Seki M, Nakajima M and Fukuda T Microfluid. Nanofluid. 19 2015 1169 1180 

  62. [62] Chu L Y, Utada A S, Shah R K, Kim J W and Weitz D A 2007 Controllable monodisperse multiple emulsions Angew. Chem., Int. Ed. Engl. 46 8970–4 10.1002/anie.200701358 Controllable monodisperse multiple emulsions Chu L Y, Utada A S, Shah R K, Kim J W and Weitz D A Angew. Chem., Int. Ed. Engl. 0570-0833 46 2007 8970 8974 

  63. [63] Valencia P M, Basto P A, Zhang L, Rhee M, Langer R, Farokhzad O C and Karnik R 2010 Single-step assembly of homogenous lipid-polymeric and lipid-quantum dot nanoparticles enabled by microfluidic rapid mixing ACS Nano 4 1671–9 10.1021/nn901433u Single-step assembly of homogenous lipid-polymeric and lipid-quantum dot nanoparticles enabled by microfluidic rapid mixing Valencia P M, Basto P A, Zhang L, Rhee M, Langer R, Farokhzad O C and Karnik R ACS Nano 4 2010 1671 1679 

  64. [64] Feng Q, Sun J and Jiang X 2016 Microfluidics-mediated assembly of functional nanoparticles for cancer-related pharmaceutical applications Nanoscale 8 12430–43 10.1039/C5NR07964K Microfluidics-mediated assembly of functional nanoparticles for cancer-related pharmaceutical applications Feng Q, Sun J and Jiang X Nanoscale 8 2016 12430 12443 

  65. [65] Majedi F S, Hasani-Sadrabadi M M, Emami S H, Shokrgozar M A, VanDersarl J J, Dashtimoghadam E, Bertsch A and Renaud P 2013 Microfluidic assisted self-assembly of chitosan based nanoparticles as drug delivery agents Lab Chip 13 204–7 10.1039/C2LC41045A Microfluidic assisted self-assembly of chitosan based nanoparticles as drug delivery agents Majedi F S, Hasani-Sadrabadi M M, Emami S H, Shokrgozar M A, VanDersarl J J, Dashtimoghadam E, Bertsch A and Renaud P Lab Chip 13 2013 204 207 

  66. [66] Dashtimoghadam E, Mirzadeh H, Taromi F A and Nyström B 2013 Microfluidic self-assembly of polymeric nanoparticles with tunable compactness for controlled drug delivery Polymer 54 4972–9 10.1016/j.polymer.2013.07.022 Microfluidic self-assembly of polymeric nanoparticles with tunable compactness for controlled drug delivery Dashtimoghadam E, Mirzadeh H, Taromi F A and Nyström B Polymer 54 2013 4972 4979 

  67. [67] Liu K, Wang H, Chen K J, Guo F, Lin W Y, Chen Y C, Phung D L, Tseng H R and Shen C K 2010 A digital microfluidic droplet generator produces self-assembled supramolecular nanoparticles for targeted cell imaging Nanotechnology 21 445603 10.1088/0957-4484/21/44/445603 A digital microfluidic droplet generator produces self-assembled supramolecular nanoparticles for targeted cell imaging Liu K, Wang H, Chen K J, Guo F, Lin W Y, Chen Y C, Phung D L, Tseng H R and Shen C K Nanotechnology 0957-4484 21 44 445603 2010 

  68. [68] Hsu M N, Luo R, Kwek K Z, Por Y C, Zhang Y and Chen C H 2015 Sustained release of hydrophobic drugs by the microfluidic assembly of multistage microgel/poly (lactic-co-glycolic acid) nanoparticle composites Biomicrofluidics 9 052601 10.1063/1.4916230 Sustained release of hydrophobic drugs by the microfluidic assembly of multistage microgel/poly (lactic-co-glycolic acid) nanoparticle composites Hsu M N, Luo R, Kwek K Z, Por Y C, Zhang Y and Chen C H Biomicrofluidics 9 052601 2015 

  69. [69] Liao T, Guo Z, Li J, Liu M and Chen Y 2013 One-step packing of anti-voltage photonic crystals into microfluidic channels for ultra-fast separation of amino acids and peptides Lab Chip 13 706–13 10.1039/C2LC40720E One-step packing of anti-voltage photonic crystals into microfluidic channels for ultra-fast separation of amino acids and peptides Liao T, Guo Z, Li J, Liu M and Chen Y Lab Chip 13 2013 706 713 

  70. [70] Baker J E, Sriram R and Miller B L 2017 Recognition-mediated particle detection under microfluidic flow with waveguide-coupled 2D photonic crystals: towards integrated photonic virus detectors Lab Chip 17 1570–7 10.1039/c7lc00221a Recognition-mediated particle detection under microfluidic flow with waveguide-coupled 2D photonic crystals: towards integrated photonic virus detectors Baker J E, Sriram R and Miller B L Lab Chip 17 2017 1570 1577 

  71. [71] Wang J, Eijkel J C T, Jin M, Xie S, Yuan D, Zhou G, Van den Berg A and Shui L 2017 Microfluidic fabrication of responsive hierarchical microscale particles from macroscale materials and nanoscale particles Sensors Actuators B 247 78–91 10.1016/j.snb.2017.02.056 Microfluidic fabrication of responsive hierarchical microscale particles from macroscale materials and nanoscale particles Wang J, Eijkel J C T, Jin M, Xie S, Yuan D, Zhou G, Van den Berg A and Shui L Sensors Actuators 0925-4005 247 B 2017 78 91 

  72. [72] Parker R M, Frka-Petesic B, Guidetti G, Kamita G, Consani G, Abell C and Vignolini S 2016 Hierarchical self-assembly of cellulose nanocrystals in a confined geometry ACS Nano 10 8443–9 10.1021/acsnano.6b03355 Hierarchical self-assembly of cellulose nanocrystals in a confined geometry Parker R M, Frka-Petesic B, Guidetti G, Kamita G, Consani G, Abell C and Vignolini S ACS Nano 10 2016 8443 8449 

  73. [73] Zhang M-Y, Xu K, Xu J-H and Luo G-S 2016 Self-assembly kinetics of colloidal particles inside monodispersed micro-droplet and fabrication of anisotropic photonic crystal micro-particles Crystals 6 122 10.3390/cryst6100122 Self-assembly kinetics of colloidal particles inside monodispersed micro-droplet and fabrication of anisotropic photonic crystal micro-particles Zhang M-Y, Xu K, Xu J-H and Luo G-S Crystals 0172-5076 6 2016 122 

  74. [74] Shang L, Shangguan F, Cheng Y, Lu J, Xie Z, Zhao Y and Gu Z 2013 Microfluidic generation of magnetoresponsive Janus photonic crystal particles Nanoscale 5 9553–7 10.1039/c3nr03218c Microfluidic generation of magnetoresponsive Janus photonic crystal particles Shang L, Shangguan F, Cheng Y, Lu J, Xie Z, Zhao Y and Gu Z Nanoscale 5 2013 9553 9557 

  75. [75] Nisisako T 2016 Recent advances in microfluidic production of Janus droplets and particles Curr. Opin. Colloid Interface Sci. 25 1–12 10.1016/j.cocis.2016.05.003 Recent advances in microfluidic production of Janus droplets and particles Nisisako T Curr. Opin. Colloid Interface Sci. 1359-0294 25 2016 1 12 

  76. [76] Hassan N, Stocco A and Abou-Hassan A 2015 Droplet liquid/liquid interfaces generated in a microfluidic device for assembling Janus inorganic nanohybrids J. Phys. Chem. C 119 10758–65 10.1021/acs.jpcc.5b02527 Droplet liquid/liquid interfaces generated in a microfluidic device for assembling Janus inorganic nanohybrids Hassan N, Stocco A and Abou-Hassan A J. Phys. Chem. 1932-7447 119 C 2015 10758 10765 

  77. [77] Wang X, Feng X, Ma G, Yao L and Ge M 2016 Amphiphilic Janus particles generated via a combination of diffusion-induced phase separation and magnetically driven dewetting and their synergistic self-assembly Adv. Mater. 28 3131–7 10.1002/adma.201506358 Amphiphilic Janus particles generated via a combination of diffusion-induced phase separation and magnetically driven dewetting and their synergistic self-assembly Wang X, Feng X, Ma G, Yao L and Ge M Adv. Mater. 28 2016 3131 3137 

  78. [78] Gómez-Graña S, Fernández-López C, Polavarapu L, Salmon J-B, Leng J, Pastoriza-Santos I and Pérez-Juste J 2015 Gold nanooctahedra with tunable size and microfluidic-induced 3D assembly for highly uniform SERS-active supercrystals Chem. Mater. 27 8310–7 10.1021/acs.chemmater.5b03620 Gold nanooctahedra with tunable size and microfluidic-induced 3D assembly for highly uniform SERS-active supercrystals Gómez-Graña S, Fernández-López C, Polavarapu L, Salmon J-B, Leng J, Pastoriza-Santos I and Pérez-Juste J Chem. Mater. 27 2015 8310 8317 

  79. [79] Visaveliya N and Kohler J M 2014 Single-step microfluidic synthesis of various nonspherical polymer nanoparticles via in situ assembling: dominating role of polyelectrolytes molecules ACS Appl. Mater. Interfaces 6 11254–64 10.1021/am501555y Single-step microfluidic synthesis of various nonspherical polymer nanoparticles via in situ assembling: dominating role of polyelectrolytes molecules Visaveliya N and Kohler J M ACS Appl. Mater. Interfaces 6 2014 11254 11264 

  80. [80] Ahmad I, Zandvliet H J W and Kooij E S 2014 Shape-induced separation of nanospheres and aligned nanorods Langmuir 30 7953–61 10.1021/la500980j Shape-induced separation of nanospheres and aligned nanorods Ahmad I, Zandvliet H J W and Kooij E S Langmuir 30 2014 7953 7961 

  81. [81] Mueller A, Eber F J, Azucena C, Petershans A, Bittner A M, Gliemann H, Jeske H and Wege C 2011 Inducible site-selective bottom-up assembly of virus-derived nanotube arrays on RNA-equipped wafers ACS Nano 5 4512–20 10.1021/nn103557s Inducible site-selective bottom-up assembly of virus-derived nanotube arrays on RNA-equipped wafers Mueller A, Eber F J, Azucena C, Petershans A, Bittner A M, Gliemann H, Jeske H and Wege C ACS Nano 5 2011 4512 4520 

  82. [82] Koh C G, Kang X, Xie Y, Fei Z, Guan J, Yu B, Zhang X and Lee L J 2009 Delivery of polyethylenimine/DNA complexes assembled in a microfluidics device Mol. Pharm. 6 1333–42 10.1021/mp900016q Delivery of polyethylenimine/DNA complexes assembled in a microfluidics device Koh C G, Kang X, Xie Y, Fei Z, Guan J, Yu B, Zhang X and Lee L J Mol. Pharm. 1543-8392 6 2009 1333 1342 

  83. [83] Jamal M, Zarafshar A M and Gracias D H 2011 Differentially photo-crosslinked polymers enable self-assembling microfluidics Nat. Commun. 2 527 10.1038/ncomms1531 Differentially photo-crosslinked polymers enable self-assembling microfluidics Jamal M, Zarafshar A M and Gracias D H Nat. Commun. 2 2011 527 

  84. [84] Sorrenti A, Rodriguez-Trujillo R, Amabilino D B and Puigmarti-Luis J 2016 Milliseconds make the difference in the far-from-equilibrium self-assembly of supramolecular chiral nanostructures J. Am. Chem. Soc. 138 6920–3 10.1021/jacs.6b02538 Milliseconds make the difference in the far-from-equilibrium self-assembly of supramolecular chiral nanostructures Sorrenti A, Rodriguez-Trujillo R, Amabilino D B and Puigmarti-Luis J J. Am. Chem. Soc. 138 2016 6920 6923 

  85. [85] White T J and Broer D J 2015 Programmable and adaptive mechanics with liquid crystal polymer networks and elastomers Nat. Mater. 14 1087–98 10.1038/nmat4433 Programmable and adaptive mechanics with liquid crystal polymer networks and elastomers White T J and Broer D J Nat. Mater. 14 2015 1087 1098 

  86. [86] Fan J, Li Y, Bisoyi H K, Zola R S, Yang D K, Bunning T J, Weitz D A and Li Q 2015 Light-directing omnidirectional circularly polarized reflection from liquid-crystal droplets Angew. Chem., Int. Ed. Engl. 54 2160–4 10.1002/anie.201410788 Light-directing omnidirectional circularly polarized reflection from liquid-crystal droplets Fan J, Li Y, Bisoyi H K, Zola R S, Yang D K, Bunning T J, Weitz D A and Li Q Angew. Chem., Int. Ed. Engl. 0570-0833 54 2015 2160 2164 

  87. [87] Noh J, Liang H-L, Drevensek-Olenik I and Lagerwall J P F 2014 Tuneable multicoloured patterns from photonic cross-communication between cholesteric liquid crystal droplets J. Mater. Chem. C 2 806–10 10.1039/C3TC32055C Tuneable multicoloured patterns from photonic cross-communication between cholesteric liquid crystal droplets Noh J, Liang H-L, Drevensek-Olenik I and Lagerwall J P F J. Mater. Chem. 2 C 2014 806 810 

  88. [88] Priest C, Quinn A, Postma A, Zelikin A N, Ralston J and Caruso F 2008 Microfluidic polymer multilayer adsorption on liquid crystal droplets for microcapsule synthesis Lab Chip 8 2182–7 10.1039/b808826h Microfluidic polymer multilayer adsorption on liquid crystal droplets for microcapsule synthesis Priest C, Quinn A, Postma A, Zelikin A N, Ralston J and Caruso F Lab Chip 8 2008 2182 2187 

  89. [89] Nelson D R 2002 Toward a tetravalent chemistry of colloids Nano Lett. 2 1125–9 10.1021/nl0202096 Toward a tetravalent chemistry of colloids Nelson D R Nano Lett. 2 2002 1125 1129 

  90. [90] Fleischmann E K, Liang H L, Kapernaum N, Giesselmann F, Lagerwall J and Zentel R 2012 One-piece micropumps from liquid crystalline core-shell particles Nat. Commun. 3 1178 10.1038/ncomms2193 One-piece micropumps from liquid crystalline core-shell particles Fleischmann E K, Liang H L, Kapernaum N, Giesselmann F, Lagerwall J and Zentel R Nat. Commun. 3 2012 1178 

  91. [91] Uchida Y, Takanishi Y and Yamamoto J 2013 Controlled fabrication and photonic structure of cholesteric liquid crystalline shells Adv. Mater. 25 3234–7 10.1002/adma.201300776 Controlled fabrication and photonic structure of cholesteric liquid crystalline shells Uchida Y, Takanishi Y and Yamamoto J Adv. Mater. 25 2013 3234 3237 

  92. [92] Asshoff S J, Sukas S, Yamaguchi T, Hommersom C A, Le Gac S and Katsonis N 2015 Superstructures of chiral nematic microspheres as all-optical switchable distributors of light Sci. Rep. 5 14183 10.1038/srep14183 Superstructures of chiral nematic microspheres as all-optical switchable distributors of light Asshoff S J, Sukas S, Yamaguchi T, Hommersom C A, Le Gac S and Katsonis N Sci. Rep. 5 2015 14183 

  93. [93] Lo C T, Jahn A, Locascio L E and Vreeland W N 2010 Controlled self-assembly of monodisperse niosomes by microfluidic hydrodynamic focusing Langmuir 26 8559–66 10.1021/la904616s Controlled self-assembly of monodisperse niosomes by microfluidic hydrodynamic focusing Lo C T, Jahn A, Locascio L E and Vreeland W N Langmuir 26 2010 8559 8566 

  94. [94] Fürst C, Zhang P, Roth S V, Drechsler M and Förster S 2016 Self-assembly of block copolymers via micellar intermediate states into vesicles on time scales from milliseconds to days Polymer 107 434–44 10.1016/j.polymer.2016.09.087 Self-assembly of block copolymers via micellar intermediate states into vesicles on time scales from milliseconds to days Fürst C, Zhang P, Roth S V, Drechsler M and Förster S Polymer 107 2016 434 444 

  95. [95] Deng N N, Yelleswarapu M, Zheng L and Huck W T 2017 Microfluidic assembly of monodisperse vesosomes as artificial cell models J. Am. Chem. Soc. 139 587–90 10.1021/jacs.6b10977 Microfluidic assembly of monodisperse vesosomes as artificial cell models Deng N N, Yelleswarapu M, Zheng L and Huck W T J. Am. Chem. Soc. 139 2017 587 590 

  96. [96] Yi C, Zhang S, Webb K T and Nie Z 2017 Anisotropic self-assembly of hairy inorganic nanoparticles Acc. Chem. Res. 50 12–21 10.1021/acs.accounts.6b00343 Anisotropic self-assembly of hairy inorganic nanoparticles Yi C, Zhang S, Webb K T and Nie Z Acc. Chem. Res. 0001-4842 50 2017 12 21 

  97. [97] He J, Wei Z, Wang L, Tomova Z, Babu T, Wang C, Han X, Fourkas J T and Nie Z 2013 Hydrodynamically driven self-assembly of giant vesicles of metal nanoparticles for remote-controlled release Angew. Chem., Int. Ed. Engl. 52 2463–8 10.1002/anie.201208425 Hydrodynamically driven self-assembly of giant vesicles of metal nanoparticles for remote-controlled release He J, Wei Z, Wang L, Tomova Z, Babu T, Wang C, Han X, Fourkas J T and Nie Z Angew. Chem., Int. Ed. Engl. 0570-0833 52 2013 2463 2468 

  98. [98] He J, Wang L, Wei Z, Yang Y, Wang C, Han X and Nie Z 2013 Vesicular self-assembly of colloidal amphiphiles in microfluidics ACS Appl. Mater. Interfaces 5 9746–51 10.1021/am4028839 Vesicular self-assembly of colloidal amphiphiles in microfluidics He J, Wang L, Wei Z, Yang Y, Wang C, Han X and Nie Z ACS Appl. Mater. Interfaces 5 2013 9746 9751 

  99. [99] Petit J, Polenz I, Baret J C, Herminghaus S and Baumchen O 2016 Vesicles-on-a-chip: a universal microfluidic platform for the assembly of liposomes and polymersomes Eur. Phys. J. E 39 59 10.1140/epje/i2016-16059-8 Vesicles-on-a-chip: a universal microfluidic platform for the assembly of liposomes and polymersomes Petit J, Polenz I, Baret J C, Herminghaus S and Baumchen O Eur. Phys. J. 1292-8941 39 E 2016 59 

  100. [100] Wang L, Liu Y, He J, Hourwitz M J, Yang Y, Fourkas J T, Han X and Nie Z 2015 Continuous microfluidic self-assembly of hybrid Janus-like vesicular motors: autonomous propulsion and controlled release Small 11 3762–7 10.1002/smll.201500527 Continuous microfluidic self-assembly of hybrid Janus-like vesicular motors: autonomous propulsion and controlled release Wang L, Liu Y, He J, Hourwitz M J, Yang Y, Fourkas J T, Han X and Nie Z Small 1442-8504 11 2015 3762 3767 

  101. [101] Matosevic S and Paegel B M 2011 Stepwise synthesis of giant unilamellar vesicles on a microfluidic assembly line J. Am. Chem. Soc. 133 2798–800 10.1021/ja109137s Stepwise synthesis of giant unilamellar vesicles on a microfluidic assembly line Matosevic S and Paegel B M J. Am. Chem. Soc. 133 2011 2798 2800 

  102. [102] Thorsen T, Roberts R W, Arnold F H and Quake S R 2001 Dynamic pattern formation in a vesicle-generating microfluidic device Phys. Rev. Lett. 86 4163–6 10.1103/PhysRevLett.86.4163 Dynamic pattern formation in a vesicle-generating microfluidic device Thorsen T, Roberts R W, Arnold F H and Quake S R Phys. Rev. Lett. 86 2001 4163 4166 

  103. [103] Chen M and Geng Z 2014 Microfluidics-based self-assembly of amphiphilic random copolymer P(St-ran-DM) J. Dispers. Sci. Technol. 36 1015–21 10.1080/01932691.2014.945124 Microfluidics-based self-assembly of amphiphilic random copolymer P(St-ran-DM) Chen M and Geng Z J. Dispers. Sci. Technol. 0193-2691 36 2014 1015 1021 

  104. [104] Wang C W, Sinton D and Moffitt M G 2011 Flow-directed block copolymer micelle morphologies via microfluidic self-assembly J. Am. Chem. Soc. 133 18853–64 10.1021/ja2067252 Flow-directed block copolymer micelle morphologies via microfluidic self-assembly Wang C W, Sinton D and Moffitt M G J. Am. Chem. Soc. 133 2011 18853 18864 

  105. [105] Pathak J A and Hudson S D 2006 Rheo-optics of equilibrium polymer solutions: wormlike micelles in elongational flow in a microfluidic cross-slot Macromolecules 39 8782–92 10.1021/ma061355r Rheo-optics of equilibrium polymer solutions: wormlike micelles in elongational flow in a microfluidic cross-slot Pathak J A and Hudson S D Macromolecules 39 2006 8782 8792 

  106. [106] Yu Z, Zheng Y, Parker R M, Lan Y, Wu Y, Coulston R J, Zhang J, Scherman O A and Abell C 2016 Microfluidic droplet-facilitated hierarchical assembly for dual cargo loading and synergistic delivery ACS Appl. Mater. Interfaces 8 8811–20 10.1021/acsami.6b00661 Microfluidic droplet-facilitated hierarchical assembly for dual cargo loading and synergistic delivery Yu Z, Zheng Y, Parker R M, Lan Y, Wu Y, Coulston R J, Zhang J, Scherman O A and Abell C ACS Appl. Mater. Interfaces 8 2016 8811 8820 

관련 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로