최소 단어 이상 선택하여야 합니다.
최대 10 단어까지만 선택 가능합니다.
다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
NTIS 바로가기ACS applied materials & interfaces, v.9 no.46, 2017년, pp.40801 - 40809
Cho, Hyunjin (Applied Quantum Composites Research Center, Korea Institute of Science and Technology, Chudong-ro 92, Bongdong-eup, Wanju, Jeollabuk-do 55324,) , Rho, Hokyun (Applied Quantum Composites Research Center, Korea Institute of Science and Technology, Chudong-ro 92, Bongdong-eup, Wanju, Jeollabuk-do 55324,) , Kim, Jun Hee (Applied Quantum Composites Research Center, Korea Institute of Science and Technology, Chudong-ro 92, Bongdong-eup, Wanju, Jeollabuk-do 55324,) , Chae, Su-Hyeong (Applied Quantum Composites Research Center, Korea Institute of Science and Technology, Chudong-ro 92, Bongdong-eup, Wanju, Jeollabuk-do 55324,) , Pham, Thang Viet (Applied Quantum Composites Research Center, Korea Institute of Science and Technology, Chudong-ro 92, Bongdong-eup, Wanju, Jeollabuk-do 55324,) , Seo, Tae Hoon (Department of Advanced Chemicals & Engineering, Chonnam National University, 77, Yongbong-ro, Buk-gu, Gwangju 61186,) , Kim, Hak Yong (Applied Quantum Composites Research Center, Korea Institute of Science and Technology, Chudong-ro 92, Bongdong-eup, Wanju, Jeollabuk-do 55324,) , Ha, Jun-Seok (Applied Qua) , Kim, Hwan Chul , Lee, Sang Hyun , Kim, Myung Jong
The heat generated from electronic devices such as light emitting diodes (LEDs), batteries, and highly integrated transistors is one of the major causes obstructing the improvement of their performance and reliability. Herein, we report a comprehensive method to dissipate the generated heat to a vas...
Xu, Y., Chung, D., Mroz, C.. Thermally conducting aluminum nitride polymer-matrix composites. Composites. Part A, Applied science and manufacturing, vol.32, no.12, 1749-1757.
Krupa, I., Novák, I., Chodák, I.. Electrically and thermally conductive polyethylene/graphite composites and their mechanical properties. Synthetic metals, vol.145, no.2, 245-252.
Zhou, W., Qi, S., Li, H., Shao, S.. Study on insulating thermal conductive BN/HDPE composites. Thermochimica acta, vol.452, no.1, 36-42.
10.1002/(SICI)1097-4628(19991227)74:14<3396::AID-APP13>3.0.CO;2-3
Yeh, L. T.. Review of Heat Transfer Technologies in Electronic Equipment. Journal of electronic packaging, vol.117, no.4, 333-339.
Zhou, Wenying, Yu, Demei, Min, Chao, Fu, Yinping, Guo, Xiusheng. Thermal, dielectric, and mechanical properties of SiC particles filled linear low-density polyethylene composites. Journal of applied polymer science, vol.112, no.3, 1695-1703.
He, Yi, Moreira, Brian E, Overson, Alan, Nakamura, Stacy H, Bider, Christine, Briscoe, John F. Thermal characterization of an epoxy-based underfill material for flip chip packaging. Thermochimica acta, vol.357, 1-8.
Zhou, Wenying, Qi, Shuhua, Tu, Chunchao, Zhao, Hongzhen, Wang, Caifeng, Kou, Jingli. Effect of the particle size of Al2O3 on the properties of filled heat-conductive silicone rubber. Journal of applied polymer science, vol.104, no.2, 1312-1318.
Vadivelu, M. A., Kumar, C. Ramesh, Joshi, Girish M.. Polymer composites for thermal management: a review. Composite interfaces, vol.23, no.9, 847-872.
Han, Xiao-Hong, Wang, Qin, Park, Young-Gil, T’Joen, Christophe, Sommers, Andrew, Jacobi, Anthony. A Review of Metal Foam and Metal Matrix Composites for Heat Exchangers and Heat Sinks. Heat transfer engineering, vol.33, no.12, 991-1009.
Bigg, D. M.. Thermally conductive polymer compositions. Polymer composites, vol.7, no.3, 125-140.
Boudenne, Abderrahim, Ibos, Laurent, Fois, Magali, Gehin, Evelyne, Majeste, Jean-Charles. Thermophysical properties of polypropylene/aluminum composites. Journal of polymer science Part B, Polymer physics, vol.42, no.4, 722-732.
Mamunya, Ye.P., Davydenko, V.V., Pissis, P., Lebedev, E.V.. Electrical and thermal conductivity of polymers filled with metal powders. European polymer journal, vol.38, no.9, 1887-1897.
Fu, Y.X., He, Z.X., Mo, D.C., Lu, S.S.. Thermal conductivity enhancement with different fillers for epoxy resin adhesives. Applied thermal engineering, vol.66, no.1, 493-498.
Ahn, H.J., Cha, S.H., Lee, W.S., Kim, E.S.. Effects of amphiphilic agent on thermal conductivity of boron nitride/poly(vinyl butyral) composites. Thermochimica acta, vol.591, 96-100.
Nabinejad, Omid, Sujan, D., Rahman, M. E., Davies, Ian J.. Determination of filler content for natural filler polymer composite by thermogravimetric analysis. Journal of thermal analysis and calorimetry, vol.122, no.1, 227-233.
De Pablos, Angel, Osendi, María Isabel, Miranzo, Pilar. Effect of Microstructure on the Thermal Conductivity of Hot‐Pressed Silicon Nitride Materials. Journal of the American Ceramic Society, vol.85, no.1, 200-206.
Zhou, Tianle, Wang, Xin, Mingyuan, G.U., Liu, Xiaoheng. Study of the thermal conduction mechanism of nano-SiC/DGEBA/EMI-2,4 composites. Polymer, vol.49, no.21, 4666-4672.
Liu, Z., Guo, Q., Shi, J., Zhai, G., Liu, L.. Graphite blocks with high thermal conductivity derived from natural graphite flake. Carbon, vol.46, no.3, 414-421.
Hong, W.T., Tai, N.H.. Investigations on the thermal conductivity of composites reinforced with carbon nanotubes. Diamond and related materials, vol.17, no.7, 1577-1581.
Huang, H., Liu, C. H., Wu, Y., Fan, S.. Aligned Carbon Nanotube Composite Films for Thermal Management. Advanced materials, vol.17, no.13, 1652-1656.
Wang, Shouling, Cheng, Yin, Wang, Ranran, Sun, Jing, Gao, Lian. Highly Thermal Conductive Copper Nanowire Composites with Ultralow Loading: Toward Applications as Thermal Interface Materials. ACS applied materials & interfaces, vol.6, no.9, 6481-6486.
Prieto, R., Molina, J.M., Narciso, J., Louis, E.. Fabrication and properties of graphite flakes/metal composites for thermal management applications. Scripta materialia, vol.59, no.1, 11-14.
Prieto, R., Molina, J.M., Narciso, J., Louis, E.. Thermal conductivity of graphite flakes–SiC particles/metal composites. Composites. Part A, Applied science and manufacturing, vol.42, no.12, 1970-1977.
Chu, Ke, Jia, Chengchang, Guo, Hong, Li, Wensheng. Microstructure and thermal conductivity of Cu–B/diamond composites. Journal of composite materials, vol.47, no.23, 2945-2953.
Das, S., Das, S., Das, K.. Synthesis and thermal behavior of Cu/Y2W3O12 composite. Ceramics international, vol.40, no.5, 6465-6472.
Noguchi, Toru, Magario, Akira, Fukazawa, Shigeru, Shimizu, Shuichi, Beppu, Junichi, Seki, Masayuki. Carbon Nanotube/Aluminium Composites with Uniform Dispersion. Materials transactions, vol.45, no.2, 602-604.
Chu, Ke, Guo, Hong, Jia, Chengchang, Yin, Fazhang, Zhang, Ximin, Liang, Xuebing, Chen, Hui. Thermal Properties of Carbon Nanotube–Copper Composites for Thermal Management Applications. Nanoscale research letters, vol.5, no.5, 868-874.
Calmidi, V. V., Mahajan, R. L.. Forced Convection in High Porosity Metal Foams. Journal of heat transfer, vol.122, no.3, 557-565.
Hsieh, W.H., Wu, J.Y., Shih, W.H., Chiu, W.C.. Experimental investigation of heat-transfer characteristics of aluminum-foam heat sinks. International journal of heat and mass transfer, vol.47, no.23, 5149-5157.
Ozmat, Burhan, Leyda, Bryan, Benson, Burton. Thermal Applications of Open-Cell Metal Foams. Materials and manufacturing processes, vol.19, no.5, 839-862.
Cho, Hyunjin, Oh, InSeoup, Kang, JungHo, Park, Sungchan, Ku, Boncheol, Park, Min, Kwak, Soonjong, Khanra, Partha, Hee Lee, Joong, Jong Kim, Myung. Catalyst and doping methods for arc graphene. Nanotechnology, vol.25, no.44, 445601-.
Khanra, Partha, Uddin, Md. Elias, Kim, Nam Hoon, Kuila, Tapas, Lee, Seung Hee, Lee, Joong Hee. Electrochemical performance of reduced graphene oxide surface-modified with 9-anthracene carboxylic acid. RSC advances, vol.5, no.9, 6443-6451.
Panthi, G., Park, S.J., Chae, S.H., Kim, T.W., Chung, H.J., Hong, S.T., Park, M., Kim, H.Y.. Immobilization of Ag3PO4 nanoparticles on electrospun PAN nanofibers via surface oximation: Bifunctional composite membrane with enhanced photocatalytic and antimicrobial activities. Journal of industrial and engineering chemistry : JIEC, vol.45, 277-286.
Ding, Bin, Li, Chunrong, Miyauchi, Yasuhiro, Kuwaki, Oriha, Shiratori, Seimei. Formation of novel 2D polymer nanowebs via electrospinning. Nanotechnology, vol.17, no.15, 3685-3691.
Mas’ud, Felisita Annisanti, Cho, Hyunjin, Lee, Taegeon, Rho, Heesuk, Seo, Tae Hoon, Kim, Myung Jong. Domain size engineering of CVD graphene and its influence on physical properties. Journal of physics. D, applied physics, vol.49, no.20, 205504-.
Malard, L.M., Pimenta, M.A., Dresselhaus, G., Dresselhaus, M.S.. Raman spectroscopy in graphene. Physics reports, vol.473, no.5, 51-87.
Ferrari, Andrea C., Basko, Denis M.. Raman spectroscopy as a versatile tool for studying the properties of graphene. Nature nanotechnology, vol.8, no.4, 235-246.
Cho, Eun Seon, Ruminski, Anne M., Aloni, Shaul, Liu, Yi-Sheng, Guo, Jinghua, Urban, Jeffrey J.. Graphene oxide/metal nanocrystal multilaminates as the atomic limit for safe and selective hydrogen storage. Nature communications, vol.7, 10804-.
How, Gregory Thien Soon, Pandikumar, Alagarsamy, Ming, Huang Nay, Ngee, Lim Hong. Highly exposed {001} facets of titanium dioxide modified with reduced graphene oxide for dopamine sensing. Scientific reports, vol.4, 5044-.
Alegaonkar, A., Alegaonkar, P., Pardeshi, S.. Exploring molecular and spin interactions of Tellurium adatom in reduced graphene oxide. Materials chemistry and physics, vol.195, 82-87.
Balandin, A. A.Thermal Properties of Graphene, Carbon Nanotubes and Nanostructured Carboxn Materials. 2011, arXiv:1106.3789 [cond-mat.mtrl-sci]. arXiv.org e-Print archive.https://arxiv.org/abs/1106.3789.
Cançado, L. G., Jorio, A., Ferreira, E. H. Martins, Stavale, F., Achete, C. A., Capaz, R. B., Moutinho, M. V. O., Lombardo, A., Kulmala, T. S., Ferrari, A. C.. Quantifying Defects in Graphene via Raman Spectroscopy at Different Excitation Energies. Nano letters : a journal dedicated to nanoscience and nanotechnology, vol.11, no.8, 3190-3196.
Papkov, Dimitry, Goponenko, Alexander, Compton, Owen C., An, Zhi, Moravsky, Alexander, Li, Xing‐Zhong, Nguyen, SonBinh T., Dzenis, Yuris A.. Improved Graphitic Structure of Continuous Carbon Nanofibers via Graphene Oxide Templating. Advanced functional materials, vol.23, no.46, 5763-5770.
Prilutsky, Sabina, Zussman, Eyal, Cohen, Yachin. Carbonization of electrospun poly(acrylonitrile) nanofibers containing multiwalled carbon nanotubes observed by transmission electron microscope with in situ heating. Journal of polymer science Part B, Polymer physics, vol.48, no.20, 2121-2128.
Lee, Sungho, Kim, Jihoon, Ku, Bon-Cheol, Kim, Junkyung, Joh, Han-Ik. Structural Evolution of Polyacrylonitrile Fibers in Stabilization and Carbonization. Advances in chemical engineering and science, vol.2, no.2, 275-282.
Mathur, R.B., Bahl, O.P., Mittal, J., Nagpal, K.C.. Structure of thermally stabilized PAN fibers. Carbon, vol.29, no.7, 1059-1061.
Kim, Bo-Hye, Yang, Kap Seung. Structure and electrochemical properties of electrospun carbon fiber composites containing graphene. Journal of industrial and engineering chemistry : JIEC, vol.20, no.5, 3474-3479.
Ra, Eun Ju, An, Kay Hyeok, Kim, Ki Kang, Jeong, Seung Yol, Lee, Young Hee. Anisotropic electrical conductivity of MWCNT/PAN nanofiber paper. Chemical physics letters, vol.413, no.1, 188-193.
Rho, Hokyun, Lee, Seungmin, Bae, Sukang, Kim, Tae-Wook, Su Lee, Dong, Jung Lee, Hyun, Yeon Hwang, Jun, Jeong, Tak, Kim, Sungmin, Ha, Jun-Seok, Hyun Lee, Sang. Three-Dimensional Porous Copper-Graphene Heterostructures with Durability and High Heat Dissipation Performance. Scientific reports, vol.5, 12710-.
Tuckerman, D.B., Pease, R.F.W.. High-performance heat sinking for VLSI. IEEE electron device letters : a publication of the IEEE Electron Devices Society, vol.2, no.5, 126-129.
Balandin, Alexander A.. Thermal properties of graphene and nanostructured carbon materials. Nature materials, vol.10, no.8, 569-581.
Klemens, P.G., Pedraza, D.F.. Thermal conductivity of graphite in the basal plane. Carbon, vol.32, no.4, 735-741.
Haggenmueller, R., Guthy, C., Lukes, J. R., Fischer, J. E., Winey, K. I.. Single Wall Carbon Nanotube/Polyethylene Nanocomposites: Thermal and Electrical Conductivity. Macromolecules, vol.40, no.7, 2417-2421.
Parker, W. J., Jenkins, R. J., Butler, C. P., Abbott, G. L.. Flash Method of Determining Thermal Diffusivity, Heat Capacity, and Thermal Conductivity. Journal of applied physics, vol.32, no.9, 1679-1684.
Thewsey, D. J., Zhao, Y. Y.. Thermal conductivity of porous copper manufactured by the lost carbonate sintering process. Physica status solidi. PSS. A, Applications and materials science, vol.205, no.5, 1126-1131.
Freitag, Marcus, Steiner, Mathias, Martin, Yves, Perebeinos, Vasili, Chen, Zhihong, Tsang, James C., Avouris, Phaedon. Energy Dissipation in Graphene Field-Effect Transistors. Nano letters : a journal dedicated to nanoscience and nanotechnology, vol.9, no.5, 1883-1888.
Fundamentals of Materials Science and Engineering Calister W. 2000
Allaoui, A, Bai, S, Cheng, H.M, Bai, J.B. Mechanical and electrical properties of a MWNT/epoxy composite. Composites science and technology, vol.62, no.15, 1993-1998.
Wu, Y., Kim, G.Y., Russell, A.M.. Effects of mechanical alloying on an Al6061-CNT composite fabricated by semi-solid powder processing. Materials science & engineering. properties, microstructure and processing. A, Structural materials, vol.538, 164-172.
해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.
*원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.