$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Spatially resolved Raman spectroscopy of defects, strains, and strain fluctuations in domain structures of monolayer graphene 원문보기

Scientific reports, v.7, 2017년, pp.16681 -   

Lee, Taegeon (Department of Physics, Research Institute of Physics and Chemistry, Chonbuk National University, Jeonju, 54896 Korea) ,  Mas’ud, Felisita A (Applied Quantum Composites Research Center, Korea Institute of Science and Technology, Wanju, 55324 Korea) ,  Kim, Myung Jong (Applied Quantum Composites Research Center, Korea Institute of Science and Technology, Wanju, 55324 Korea) ,  Rho, Heesuk (Department of Physics, Research Institute of Physics and Chemistry, Chonbuk National University, Jeonju, 54896 Korea)

Abstract AI-Helper 아이콘AI-Helper

We report spatially resolved Raman scattering results of polycrystalline monolayer graphene films to study the effects of defects, strains, and strain fluctuations on the electrical performance of graphene. Two-dimensional Raman images of the integrated intensities of the G and D peaks (IG and ID) w...

참고문헌 (36)

  1. 1. Geng D Wang H Yu G Graphene single crystals: size and morphology engineering Adv. Mater. 2015 27 2821 2837 10.1002/adma.201405887 25809643 

  2. 2. Cummings AW Charge transport in polycrystalline graphene: challenges and opportunities Adv. Mater. 2014 26 5079 5094 10.1002/adma.201401389 24903153 

  3. 3. Grosse KL Direct observation of resistive heating at graphene wrinkles and grain boundaries Appl. Phys. Lett. 2014 105 143109 10.1063/1.4896676 

  4. 4. Liu HK Lin Y Luo SN Grain boundary energy and grain size dependences of thermal conductivity of polycrystalline graphene J. Phys. Chem. C 2014 118 24797 24802 10.1021/jp508035b 

  5. 5. Chen MQ Effects of grain size, temperature and strain rate on the mechanical properties of polycrystalline graphene – A molecular dynamics study Carbon 2015 85 135 146 10.1016/j.carbon.2014.12.092 

  6. 6. Yang M Sasaki S Ohnishi M Suzuki K Miura H Electronic properties and strain sensitivity of CVD-grown graphene with acetylene Jpn. J. Appl. Phys. 2016 55 04EP05 10.7567/JJAP.55.04EP05 

  7. 7. Isacsson A Scaling properties of polycrystalline graphene: a review 2D Mater. 2017 4 012002 10.1088/2053-1583/aa5147 

  8. 8. Chen JH Cullen WG Jang C Fuhrer MS Williams ED Defect scattering in graphene Phys. Rev. Lett. 2009 102 236805 10.1103/PhysRevLett.102.236805 19658959 

  9. 9. Li X Graphene films with large domain size by a two-step chemical vapor deposition process Nano Lett. 2010 10 4328 4334 10.1021/nl101629g 20957985 

  10. 10. Zhu W Structure and electronic transport in graphene wrinkles Nano Lett. 2012 12 3431 3436 10.1021/nl300563h 22646513 

  11. 11. Mas’ud FA Domain size engineering of CVD graphene and its influence on physical properties J. Phys. D: Appl. Phys. 2016 49 205504 10.1088/0022-3727/49/20/205504 

  12. 12. Bae SH Graphene-based transparent strain sensor Carbon 2013 51 236 242 10.1016/j.carbon.2012.08.048 

  13. 13. He X Electronic properties of polycrystalline graphene under large local strain Appl. Phys. Lett. 2014 104 243108 10.1063/1.4883866 

  14. 14. Lee SM Materialization of strained CVD-graphene using thermal mismatch Nano Research 2015 8 2082 2091 10.1007/s12274-015-0719-9 

  15. 15. Couto NJG Random strain fluctuations as dominant disorder source for high-quality on-substrate graphene devices Phys. Rev. X 2014 4 041019 

  16. 16. Neumann C Raman spectroscopy as probe of nanometre-scale strain variations in graphene Nat. Commun. 2015 6 8429 10.1038/ncomms9429 26416349 

  17. 17. Ferrari AC Basko DM Raman spectroscopy as a versatile tool for studying the properties of graphene Nat. Nanotechnol. 2013 8 235 246 10.1038/nnano.2013.46 23552117 

  18. 18. Hao Y Probing layer number and stacking order of few-layer graphene by Raman spectroscopy Small 2010 6 195 200 10.1002/smll.200901173 19908274 

  19. 19. Metten D Federspiel F Romeo M Berciaud S Probing built-in strain in freestanding graphene monolayers by Raman Spectroscopy Phys. Status Solidi B 2013 250 2681 2686 10.1002/pssb.201300220 

  20. 20. Shin Y Raman spectroscopy of highly pressurized graphene membranes Appl. Phys. Lett. 2016 108 221907 10.1063/1.4952972 

  21. 21. Lee JE Ahn G Shim J Lee YS Ryu S Optical separation of mechanical strain from charge doping in graphene Nat. Commun. 2012 3 1024 10.1038/ncomms2022 22929781 

  22. 22. Lai S Jang SK Song YJ Lee S Probing graphene defects and estimating graphene quality with optical microscopy Appl. Phys. Lett. 2014 104 043101 10.1063/1.4863080 

  23. 23. Lee D Significant enhancement of the electrical transport properties of graphene films by controlling the surface roughness of Cu foils before and during chemical vapor deposition Nanoscale 2014 6 12943 12951 10.1039/C4NR03633F 25233143 

  24. 24. Duong, D. L. et al . Probing graphene grain boundaries with optical microscopy. Nature 490 , 235–239 (2012). 

  25. 25. Malard LM Probing the electronic structure of bilayer graphene by Raman scattering Phys. Rev. B 2007 76 201401(R) 10.1103/PhysRevB.76.201401 

  26. 26. Park KD Raschke MB Atkin JM Lee YH Jeong MS Probing bilayer grain boundaries in large-area graphene with tip-enhanced Raman spectroscopy Adv. Mater. 2017 29 1603601 10.1002/adma.201603601 

  27. 27. Ogawa Y Structure and transport properties of the interface between CVD-grown graphene domains Nanoscale 2014 6 7288 7294 10.1039/c3nr06828e 24847777 

  28. 28. Yu Q Control and characterization of individual grains and grain boundaries in graphene grown by chemical vapour deposition Nat. Mater. 2011 10 443 449 10.1038/nmat3010 21552269 

  29. 29. Calizo I Bejenari I Rahman M Liu G Balandin AA Ultraviolet Raman microscopy of single and multilayer graphene J. Appl. Phys. 2009 106 043509 10.1063/1.3197065 

  30. 30. Klar P Raman scattering efficiency of graphene Phys. Rev. B 2013 87 205435 10.1103/PhysRevB.87.205435 

  31. 31. Kim K Raman spectroscopy study of rotated double-layer graphene: misorientation-angle dependence of electronic structure Phys. Rev. Lett. 2012 108 246103 10.1103/PhysRevLett.108.246103 23004295 

  32. 32. Ferreira EHM Evolution of the Raman spectra from single-, few-, and many-layer graphene with increasing disorder Phys. Rev. B 2010 82 125429 10.1103/PhysRevB.82.125429 

  33. 33. Eckmann A Felten A Verzhbitskiy I Davey R Casiraghi C Raman study on defective graphene: Effect of the excitation energy, type, and amount of defects Phys. Rev. B 2013 88 035426 10.1103/PhysRevB.88.035426 

  34. 34. Chaitoglou S Bertran E Control of the strain in chemical vapor deposition-grown graphene over copper via H 2 flow J. Phys. Chem. C 2016 120 25572 25577 10.1021/acs.jpcc.6b07055 

  35. 35. Koo E Ju SY Role of residual polymer on chemical vapor grown graphene by Raman spectroscopy Carbon 2015 86 318 324 10.1016/j.carbon.2015.01.055 

  36. 36. Metten D Federspiel F Romeo M Berciaud S All-optical blister test of suspended graphene using micro-Raman spectroscopy Phys. Rev. Applied 2014 2 054008 10.1103/PhysRevApplied.2.054008 

LOADING...

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로