$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

A hybrid strain and thermal energy harvester based on an infra-red sensitive Er 3+ modified poly(vinylidene fluoride) ferroelectret structure 원문보기

Scientific reports, v.7, 2017년, pp.16703 -   

Ghosh, Sujoy Kumar (Organic Nano-Piezoelectric Device Laboratory (ONPDL), Department of Physics, Jadavpur University, Kolkata, 700032 India) ,  Xie, Mengying (Department of Mechanical Engineering, University of Bath, Bath, BA2 7AY UK) ,  Bowen, Christopher Rhys (Department of Mechanical Engineering, University of Bath, Bath, BA2 7AY UK) ,  Davies, Philip R. (Department of Mechanical Engineering, University of Bath, Bath, BA2 7AY UK) ,  Morgan, David J. (Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Cardiff, CF10 3AT United Kingdom) ,  Mandal, Dipankar (Organic Nano-Piezoelectric Device Laboratory (ONPDL), Department of Physics, Jadavpur University, Kolkata, 700032 India)

Abstract AI-Helper 아이콘AI-Helper

In this paper, a novel infra-red (IR) sensitive Er3+ modified poly(vinylidene fluoride) (PVDF) (Er-PVDF) film is developed for converting both mechanical and thermal energies into useful electrical power. The addition of Er3+ to PVDF is shown to improve piezoelectric properties due to the formation ...

참고문헌 (50)

  1. 1. Bowen CR Kim HA Weaver PM Dunn S Piezoelectric and ferroelectric materials and structures for energy harvesting applications Energy Environ. Sci. 2014 7 25 44 10.1039/C3EE42454E 

  2. 2. Zhang J Wang C Bowen C Piezoelectric effects and electromechanical theories at the nanoscale Nanoscale 2014 6 13314 13327 10.1039/C4NR03756A 25315991 

  3. 3. Yoon S Sim JK Cho YH A flexible and wearable human stress monitoring patch Sci. Rep. 2016 6 23468 10.1038/srep23468 27004608 

  4. 4. Alam MM Ghosh SK Sultana A Mandal D Lead-free ZnSnO3/MWCNTs-based self-poled flexible hybrid nanogenerator for piezoelectric power generation Nanotechnology 2015 26 165403 10.1088/0957-4484/26/16/165403 25827201 

  5. 5. Hou C A strong and stretchable self-healing film with self-activated pressure sensitivity for potential artificial skin applications Sci. Rep. 2013 3 3138 10.1038/srep03138 24190511 

  6. 6. Chen X A high performance P(VDF-TrFE) nanogenerator with self-connected and vertically integrated fibers by patterned EHD pulling Nanoscale 2015 7 11536 11544 10.1039/C5NR01746G 25981294 

  7. 7. Saito Y Lead-free piezoceramics Nature 2004 432 84 87 10.1038/nature03028 15516921 

  8. 8. Wan C Bowen CR Multiscale-structuring of polyvinylidene fluoride for energy harvesting: the impact of molecular-, micro- and macro-structure J. Mater. Chem. A 2017 5 3091 3128 10.1039/C6TA09590A 

  9. 9. Lovinger AJ Ferroelectric polymers Science 1983 220 1115 1121 10.1126/science.220.4602.1115 17818472 

  10. 10. Furukawa T Ferroelectric properties of vinylidene fluoride copolymers Phase Transit. 1989 18 143 211 10.1080/01411598908206863 

  11. 11. Martins P Lopes AC Lanceros-Mendeza S Electroactive phases of poly(vinylidene fluoride): determination, processing and applications Prog. Polym. Sci. 2014 39 683 706 10.1016/j.progpolymsci.2013.07.006 

  12. 12. Bauer S Gerhard-Multhaupt R Sessler GM Ferroelectrets: soft electroactive foams for transducers Phys. Today 2004 57 37 43 10.1063/1.1688068 

  13. 13. Garain S Self-poled transparent and flexible uv light-emitting cerium complex−PVDF composite: a high-performance nanogenerator ACS Appl. Mater. Interfaces 2015 1298 1307 

  14. 14. Adhikary P Garain S Ram S Mandal D Flexible hybrid Eu 3+ doped P(VDF-HFP) nanocomposite film possess hypersensitive electronic transitions and piezoelectric throughput J. Polym. Sci. B Polym. Phys. 2016 54 2335 2345 10.1002/polb.24144 

  15. 15. Ghosh SK Yb 3+ assisted self-polarized pvdf based ferroelectretic nanogenerator: a facile strategy of highly efficient mechanical energy harvester fabrication Nano Energy 2016 30 621 629 10.1016/j.nanoen.2016.10.042 

  16. 16. Wei T Mid-infrared fluorescence, energy transfer process and rate equation analysis in Er 3+ doped germanate glass Sci. Rep. 2014 4 6060 10.1038/srep06060 25317654 

  17. 17. Mandal D Banerjee HD Goswami MLN Acharya HN Synthesis of Er 3+ and Er 3+ :Yb 3+ doped sol–gel derived silica glass and studies on their optical properties Bull. Mater. Sci. 2004 27 367 372 10.1007/BF02704774 

  18. 18. Zhou J Liu Q Feng W Sun Y Li F Upconversion luminescent Materials: advances and applications Chem. Rev. 2015 115 395 465 10.1021/cr400478f 25492128 

  19. 19. Sun L-D Dong H Zhang P-Z Yan C-H Upconversion of rare earth nanomaterials Annu. Rev. Phys. Chem. 2015 66 619 42 10.1146/annurev-physchem-040214-121344 25648487 

  20. 20. Tanyi EK Burton BT Narimanov EE Noginov MA Thermal radiation of Er doped dielectric crystals: Probing the range of applicability of the Kirchhoff’s law Sci. Rep. 2017 7 2040 10.1038/s41598-017-01544-3 28515467 

  21. 21. Zhao T An infrared-driven flexible pyroelectric generator for non-contact energy harvester Nanoscale 2016 8 8111 8117 10.1039/C5NR09290F 27025660 

  22. 22. Sebald G Guyomar D Agbossou A On thermoelectric and pyroelectric energy harvesting Smart Mater. Struct. 2009 18 125006 10.1088/0964-1726/18/12/125006 

  23. 23. Ghosh SK Alam MM Mandal D The in situ formation of platinum nanoparticles and their catalytic role in electroactive phase formation in poly(vinylidene fluoride): a simple preparation of multifunctional poly(vinylidene fluoride) films doped with platinum nanoparticles RSC Adv. 2014 4 41886 41894 10.1039/C4RA06334A 

  24. 24. Mandal D Henkel K Schmeisser D Comment on “preparation and characterization of silver poly(vinylidene fluoride) nanocomposites: formation of piezoelectric polymorph of poly-(vinylidene fluoride)” J. Phys. Chem. B 2011 115 10567 10569 10.1021/jp201335j 21842850 

  25. 25. Tamang A DNA-assisted β-phase nucleation and alignment of molecular dipoles in pvdf film: a realization of self-poled bio-inspired flexible polymer nanogenerator for portable electronic devices ACS Appl. Mater. Interfaces 2015 7 16143 16147 10.1021/acsami.5b04161 26189605 

  26. 26. Uwamino Y Tsuge A Ishizuka T Yamatera H X-ray photoelectron spectroscopy of rare earth halides Bull. Chem. Soc. Jpn. 1986 59 2263 10.1246/bcsj.59.2263 

  27. 27. Nefedov VI Salyn YV Shtemenko AV Kotelnikova AS X-ray photoelectron study of trans-influence of the Re–Re multiple bond Inorg. Chim. Acta 1980 45 L49 10.1016/S0020-1693(00)80090-0 

  28. 28. Kim YJ Park CR Analysis of problematic complexing behavior of ferric chloride with n , n -dimethylformamide using combined techniques of FT-IR, XPS, and TGA/DTG Inorg. Chem. 2002 41 6211 6216 10.1021/ic011306p 12444762 

  29. 29. Sugama T KuKacka LE Carciello N Hocker NJ Study of interactions at water-soluble polymer/Ca(OH) 2 or gibbsite interfaces by XPS Cement Concrete Res. 1989 19 857 10.1016/0008-8846(89)90098-7 

  30. 30. Oxtoby DW Catching crystals at birth Nature 2000 406 464 465 10.1038/35020163 10952291 

  31. 31. Ghosh SK Sinha TK Mahanty B Mandal D Self-poled efficient flexible ferroelectretic nanogenerator: a new class of piezoelectric energy harvester Energy Technol. 2015 3 1190 1197 10.1002/ente.201500167 

  32. 32. Mohebbi, A., Mighri, F., Ajji, A. & Rodrigue, D. Cellular polymer ferroelectret: a review on their development and their piezoelectric properties. Adv . Polym . Tech ., 21686, 10.1002/adv.21686 (2016). 

  33. 33. Tashiro K Kobayashi M Tadokoro H Vibrational spectra and disorder-order transition of poly(vinylidene fluoride) form III Macromolecules 1981 14 1757 64 10.1021/ma50007a028 

  34. 34. Karan SK Mandal D Khatua BB Self-powered flexible Fe-doped RGO/PVDF nanocomposite: an excellent material for a piezoelectric energy harvester Nanoscale 2015 7 10655 10666 10.1039/C5NR02067K 26030744 

  35. 35. Choi Y-Y Enhancement of local piezoresponse in polymer ferroelectrics via nanoscale control of microstructure ACS Nano 2015 9 1809 1819 10.1021/nn5067232 25646972 

  36. 36. Milani A Castiglioni C Radice S Joint experimental and computational investigation of the structural and spectroscopic properties of poly(vinylidene fluoride) polymorphs J. Phys. Chem. B 2015 119 4888 4897 10.1021/acs.jpcb.5b00161 25775384 

  37. 37. Ghosh SK Mandal D High-performance bio-piezoelectric nanogenerator made with fish scale Appl. Phys. Lett. 2016 109 103701 10.1063/1.4961623 

  38. 38. Ghosh SK Mandal D Efficient natural piezoelectric nanogenerator: electricity generation from fish swim bladder Nano Energy 2016 28 356 365 10.1016/j.nanoen.2016.08.030 

  39. 39. Almond DP Bowen CR Anomalous power law dispersions in ac conductivity and permittivity shown to be characteristics of microstructural electrical networks Phys. Rev. Lett. 2004 92 157601 10.1103/PhysRevLett.92.157601 15169318 

  40. 40. Fröhlich, H. Theory of Dielectrics (Oxford University Press, London, 1947). 

  41. 41. Jana S Garain S Sen S Mandal D The influence of hydrogen bonding on the dielectric constant and the piezoelectric energy harvesting performance of hydrated metal salt mediated PVDF films Phys. Chem. Chem. Phys. 2015 17 17429 17436 10.1039/C5CP01820J 26077827 

  42. 42. Zhu L Exploring strategies for high dielectric constant and low loss polymer dielectrics J. Phys. Chem. Lett. 2014 5 3677 3687 10.1021/jz501831q 26278736 

  43. 43. Ghosh SK Electrospun gelatin nanofiber based self-powered bio- e -skin for health care monitoring Nano Energy 2017 36 166 175 10.1016/j.nanoen.2017.04.028 

  44. 44. Zhang Y Enhanced pyroelectric and piezoelectric properties of pzt with aligned porosity for energy harvesting applications J. Mater. Chem. A 2017 5 6569 6580 10.1039/C7TA00967D 

  45. 45. Ghosh SK Mandal D Bio-assembled, piezoelectric prawn shell made self-powered wearable sensor for noninvasive physiological signal monitoring Appl. Phys. Lett. 2017 110 123701 10.1063/1.4979081 

  46. 46. Ghosh SK Mandal D Sustainable energy generation from piezoelectric biomaterial for noninvasive physiological signal monitoring ACS Sustainable Chem. Eng. 2017 5 8836 8843 10.1021/acssuschemeng.7b01617 

  47. 47. Lee JH Thermally induced strain-coupled highly stretchable and sensitive pyroelectric nanogenerators Adv. Energy Mater. 2015 5 1500704 10.1002/aenm.201500704 

  48. 48. Zabek D Seunarine K Spacie C Bowen C Graphene ink laminate structures on poly(vinylidene difluoride) (pvdf) for pyroelectric thermal energy harvesting and waste heat recovery ACS Appl. Mater. Interfaces 2017 9 9161 9167 10.1021/acsami.6b16477 28222264 

  49. 49. Zabek D Taylor J Boulbar EL Bowen CR Micropatterning of flexible and free standing polyvinylidene difluoride (pvdf) films for enhanced pyroelectric energy transformation Adv. Energy Mater. 2015 5 1401891 10.1002/aenm.201401891 

  50. 50. Xie MY Zabek D Bowen CR Abdelmageed M Arafa M Wind-driven pyroelectric energy harvesting device Smart Materials and Structures 2016 25 125023 10.1088/0964-1726/25/12/125023 

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로