최소 단어 이상 선택하여야 합니다.
최대 10 단어까지만 선택 가능합니다.
다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
NTIS 바로가기Journal of multivariate analysis, v.157, 2017년, pp.14 - 28
Goh, Gyuhyeong (Department of Statistics, Kansas State University, Manhattan, KS 66506, United States) , Dey, Dipak K. (Department of Statistics, University of Connecticut, Storrs, CT 06269, United States) , Chen, Kun (Department of Statistics, University of Connecticut, Storrs, CT 06269, United States)
Abstract Many modern statistical problems can be cast in the framework of multivariate regression, where the main task is to make statistical inference for a possibly sparse and low-rank coefficient matrix. The low-rank structure in the coefficient matrix is of intrinsic multivariate nature, which,...
Alquier 309 2013 Bayesian Methods for Low-Rank Matrix Estimation: Short Survey and Theoretical Study
Ann. Math. Stat. Anderson 22 327 1951 10.1214/aoms/1177729580 Estimating linear restrictions on regression coefficients for multivariate normal distributions
Biometrika Armagan 100 1011 2013 10.1093/biomet/ast028 Posterior consistency in linear models under shrinkage priors
M.T. Bahadori, Z. Zheng, Y. Liu, J. Lv, Scalable interpretable multi-response regression via SEED, 2016. arXiv:1608.03686.
J. R. Stat. Soc. Ser. B Stat. Methodol. Besag 48 259 1986 10.1111/j.2517-6161.1986.tb01412.x On the statistical analysis of dirty pictures
Stat. Interface Breheny 2 369 2009 10.4310/SII.2009.v2.n3.a10 Penalized methods for bi-level variable selection
Ann. Statist. Bunea 39 1282 2011 10.1214/11-AOS876 Optimal selection of reduced rank estimators of high-dimensional matrices
Ann. Statist. Bunea 40 2359 2012 10.1214/12-AOS1039 Joint variable and rank selection for parsimonious estimation of high dimensional matrices
J. R. Stat. Soc. Ser. B Stat. Methodol. Chen 74 203 2012 10.1111/j.1467-9868.2011.01002.x Reduced rank stochastic regression with a sparse singular value decomposition
Biometrika Chen 100 901 2013 10.1093/biomet/ast036 Reduced rank regression via adaptive nuclear norm penalization
J. Amer. Statist. Assoc. Chen 107 1533 2012 10.1080/01621459.2012.734178 Sparse reduced-rank regression for simultaneous dimension reduction and variable selection
Choi vol. 3 170 2008 Remarks on Consistency of Posterior Distributions
J. R. Stat. Soc. Ser. B Stat. Methodol. Chun 72 3 2010 10.1111/j.1467-9868.2009.00723.x Sparse partial least squares regression for simultaneous dimension reduction and variable selection
Ann. Statist. Diaconis 14 1 1986 On the consistency of bayes estimates
J. Amer. Statist. Assoc. Fan 96 1348 2001 10.1198/016214501753382273 Variable selection via nonconcave penalized likelihood and its oracle properties
J. R. Stat. Soc. Ser. B Stat. Methodol. Fan 70 849 2008 10.1111/j.1467-9868.2008.00674.x Sure independence screening for ultrahigh dimensional feature space
Statist. Sinica Fan 20 101 2010 A selective overview of variable selection in high dimensional feature space
Ann. Statist. Fan 38 3567 2010 10.1214/10-AOS798 Sure independence screening in generalized linear models with NP-dimensionality
J. Econometrics Geweke 75 121 1996 10.1016/0304-4076(95)01773-9 Bayesian reduced rank regression in econometrics
Ghosh 2006 An Introduction to Bayesian Analysis: Theory and Methods
Statist. Sci. Huang 27 4 481 2012 10.1214/12-STS392 A selective review of group selection in high dimensional models
Ann. Statist. Huang 36 587 2008 10.1214/009053607000000875 Asymptotic properties of bridge estimators in sparse high-dimensional regression models
J. Multivariate Anal. Izenman 5 248 1975 10.1016/0047-259X(75)90042-1 Reduced-rank regression for the multivariate linear model
Bayesian Anal. Kyung 5 369 2010 Penalized regression, standard errors, and Bayesian lassos
Y.J. Lim, Y.W. Teh, Variational Bayesian approach to movie rating prediction, in: Proceedings of KDD Cup and Workshop, 2007.
Z. Ma, Z. Ma, T. Sun, Adaptive estimation in two-way sparse reduced-rank regression, 2014. arXiv:1403.1922.
Biometrika Mukherjee 102 457 2015 10.1093/biomet/asu067 On the degrees of freedom of reduced-rank estimators in multivariate regression
Stat. Anal. Data Min. Mukherjee 4 612 2011 10.1002/sam.10138 Reduced rank ridge regression and its kernel extensions
Ann. Statist. Negahban 39 1069 2011 10.1214/10-AOS850 Estimation of (near) low-rank matrices with noise and high-dimensional scaling
J. Amer. Statist. Assoc. Park 103 681 2008 10.1198/016214508000000337 The Bayesian lasso
Reinsel 1998 Multivariate Reduced-rank Regression: Theory and Applications
Ann. Statist. Rohde 39 887 2011 10.1214/10-AOS860 Estimation of high-dimensional low-rank matrices
Ann. Statist. Schwarz 6 461 1978 10.1214/aos/1176344136 Estimating the dimension of a model
J. R. Stat. Soc. Ser. B Stat. Methodol. Tibshirani 58 267 1996 10.1111/j.2517-6161.1996.tb02080.x Regression shrinkage and selection via the lasso
J. R. Stat. Soc. Ser. B Stat. Methodol. Yuan 69 329 2007 10.1111/j.1467-9868.2007.00591.x Dimension reduction and coefficient estimation in multivariate linear regression
J. R. Stat. Soc. Ser. B Stat. Methodol. Yuan 68 49 2006 10.1111/j.1467-9868.2005.00532.x Model selection and estimation in regression with grouped variables
Ann. Statist. Zhang 38 894 2010 10.1214/09-AOS729 Nearly unbiased variable selection under minimax concave penalty
J. Amer. Statist. Assoc. Zhu 109 977 2014 10.1080/01621459.2014.923775 Bayesian generalized low rank regression models for neuroimaging phenotypes and genetic markers
해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.
*원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다.
출판사/학술단체 등이 한시적으로 특별한 프로모션 또는 일정기간 경과 후 접근을 허용하여, 출판사/학술단체 등의 사이트에서 이용 가능한 논문
※ AI-Helper는 부적절한 답변을 할 수 있습니다.