$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Increasing conversion efficiency of two-step photon up-conversion solar cell with a voltage booster hetero-interface 원문보기

Scientific reports, v.8, 2018년, pp.872 -   

Asahi, Shigeo (Department of Electrical and Electronic Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501 Japan) ,  Kusaki, Kazuki (Department of Electrical and Electronic Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501 Japan) ,  Harada, Yukihiro (Department of Electrical and Electronic Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501 Japan) ,  Kita, Takashi (Department of Electrical and Electronic Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501 Japan)

Abstract AI-Helper 아이콘AI-Helper

Development of high-efficiency solar cells is one of the attractive challenges in renewable energy technologies. Photon up-conversion can reduce the transmission loss and is one of the promising concepts which improve conversion efficiency. Here we present an analysis of the conversion efficiency, w...

참고문헌 (32)

  1. 1. Shockley W Queisser HJ Detailed Balance Limit of Efficiency of p-n Junction Solar Cells J. Appl. Phys. 1961 32 510 519 10.1063/1.1736034 

  2. 2. Hirst LC Ekins-Daukes NJ Fundamental losses in solar cells Prog. Photovoltaics Res. Appl. 2011 19 286 293 10.1002/pip.1024 

  3. 3. Würfel P Thermodynamic limitations to solar energy conversion Phys. E 2002 14 18 26 10.1016/S1386-9477(02)00355-7 

  4. 4. Henry CH Limiting efficiencies of ideal single and multiple energy gap terrestrial solar cells J. Appl. Phys. 1980 51 4494 10.1063/1.328272 

  5. 5. Green MA Solar cell efficiency tables (version 49) Prog. Photovolt Res. Appl. 2017 25 3 13 10.1002/pip.2855 

  6. 6. Luque A Martí A Increasing the efficiency of ideal solar cells by photon induced transitions at intermediate levels Phys. Rev. Lett. 1997 78 5014 5017 10.1103/PhysRevLett.78.5014 

  7. 7. Okada Y Intermediate band solar cells: Recent progress and future directions Appl. Phys. Rev. 2015 2 21302 10.1063/1.4916561 

  8. 8. Luque A Martí A Stanley C Understanding intermediate-band solar cells Nat. Photonics 2012 6 146 152 10.1038/nphoton.2012.1 

  9. 9. Sogabe T Shen Q Yamaguchi K Recent progress on quantum dot solar cells: a review J. Photonics Energy 2016 6 40901 10.1117/1.JPE.6.040901 

  10. 10. Asahi S Suppression of thermal carrier escape and efficient photo-carrier generation by two-step photon absorption in InAs quantum dot intermediate-band solar cells using a dot-in-well structure J. Appl. Phys. 2014 116 63510-1 63510–5 10.1063/1.4892826 

  11. 11. Nakata, Y., Sugiyama, Y. & Sugawara, M. In Self-assembled InGaAs/ GaAs quantum dots (ed. Sugawara, M.) 117–154 (Academic press, 1999). 

  12. 12. Harbord E Spencer P Clarke E Murray R The influence of size distribution on the luminescence decay from excited states of InAs/GaAs self-assembled quantum dots J. Appl. Phys. 2009 105 33507 10.1063/1.3073934 

  13. 13. Kasamatsu N Kada T Hasegawa A Harada Y Kita T Effect of internal electric field on InAs/GaAs quantum dot solar cells J. Appl. Phys. 2014 115 83510 10.1063/1.4867042 

  14. 14. Shoji Y Tamaki R Okada Y Multi-stacked GaSb/GaAs type-II quantum nanostructures for application to intermediate band solar cells AIP Adv. 2017 7 65305 10.1063/1.4985722 

  15. 15. Tayagaki T Sugaya T Type-II InP quantum dots in wide-bandgap InGaP host for intermediate-band solar cells Appl. Phys. Lett. 2016 108 153901 10.1063/1.4946761 

  16. 16. Hwang J Multiphoton Sub-Band-Gap Photoconductivity and Critical Transition Temperature in Type-II GaSb Quantum-Dot Intermediate-Band Solar Cells Phys. Rev. Appl. 2014 1 51003 10.1103/PhysRevApplied.1.051003 

  17. 17. Tomić, S. Effect of Sb induced type II alignment on dynamical processes in InAs/GaAs/GaAsSb quantum dots: Implication to solar cell design. Appl. Phys. Lett . 103,  072112 (2013). 

  18. 18. Tanibuchi T Photocarrier transport dynamics in InAs/GaAs quantum dot superlattice solar cells using time-of-flight spectroscopy Phys. Rev. B 2016 94 195313 10.1103/PhysRevB.94.195313 

  19. 19. Tomić S Intermediate-band solar cells: Influence of band formation on dynamical processes in InAs/GaAs quantum dot arrays Phys. Rev. B 2010 82 195321 10.1103/PhysRevB.82.195321 

  20. 20. Asahi S Teranishi H Kusaki K Kaizu T Kita T Two-step photon up-conversion solar cells Nat. Commun. 2017 8 14962 10.1038/ncomms14962 28382945 

  21. 21. Yoshida M Ekins-Daukes NJ Farrell DJ Phillips CC Photon ratchet intermediate band solar cells Appl. Phys. Lett. 2012 100 263902 10.1063/1.4731277 

  22. 22. Yoshida M Progress toward realizing an intermediate band solar cell-Sequential absorption of photons in a quantum well solar cell IEEE J. Photovoltaics 2014 4 634 638 10.1109/JPHOTOV.2014.2301891 

  23. 23. Pusch A Limiting efficiencies for intermediate band solar cells with partial absorptivity: the case for a quantum ratchet Prog. Photovoltaics Res. Appl. 2016 24 656 662 10.1002/pip.2751 

  24. 24. Würfel P The chemical potential of radiation J. Phys. C Solid State Phys. 1982 15 3967 3985 10.1088/0022-3719/15/18/012 

  25. 25. Cheong JS Baharuddin ANAP Ng JS Krysa AB David JPR Absorption coefficients in AlGaInP lattice-matched to GaAs Sol. Energy Mater. Sol. Cells 2017 164 28 31 10.1016/j.solmat.2017.01.042 

  26. 26. Yim WM Direct and Indirect Optical Energy Gaps of AlAs J. Appl. Phys. 1971 42 2854 2856 10.1063/1.1660639 

  27. 27. Bellaiche L Band gaps of lattice-matched (Ga, In) (As, N) alloys Appl. Phys. Lett. 1999 75 2578 2580 10.1063/1.125083 

  28. 28. Jackrel, D. B. et al . Dilute nitride GaInNAs and GaInNAsSb solar cells by molecular beam epitaxy. J. Appl. Phys . 101,  114916 (2007). 

  29. 29. Polojärvi V Influence of As/group-III flux ratio on defects formation and photovoltaic performance of GaInNAs solar cells Sol. Energy Mater. Sol. Cells 2016 149 213 220 10.1016/j.solmat.2016.01.024 

  30. 30. Broderick CA Usman M Sweeney SJ O’Reilly EP Band engineering in dilute nitride and bismide semiconductor lasers Semicond. Sci. Technol. 2012 27 94011 10.1088/0268-1242/27/9/094011 

  31. 31. Trupke T Würfel P Improved spectral robustness of triple tandem solar cells by combined series/parallel interconnection J. Appl. Phys. 2004 96 2347 2351 10.1063/1.1766091 

  32. 32. Naitoh S Okada Y Efficiency estimations for multijunction and intermediate band solar cells using actual measured solar spectra in Japan J. Sol. Energy Eng. 2015 137 34504 10.1115/1.4029382 

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로