$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Effect of sludge age on microbial consortia developed in MFCs 원문보기

Journal of chemical technology and biotechnology, v.93 no.5, 2018년, pp.1290 - 1299  

Mateo, Sara (Department of Chemical Engineering, University of Castilla La Mancha, Ciudad Real, Spain) ,  Zamorano‐López, Nuria (Departament d'Enginyeria Quí) ,  Borras, Luis (mica, Universitat de Valè) ,  Fernandez‐Morales, Francisco Jesús (ncia, Valencia, Spain) ,  Cañizares, Pablo (Departament d'Enginyeria Quí) ,  Seco, Aurora (mica, Universitat de Valè) ,  Rodrigo, Manuel (ncia, Valencia, Spain)

Abstract AI-Helper 아이콘AI-Helper

AbstractBACKGROUNDThis work is focused on the assessment of the performance of mini‐scale air‐breathing microbial fuel cells (MFCs), by monitoring the evolution of the bio‐electrogenic activity for a period of 40 days and by comparing the microorganisms populations developed in eac...

주제어

참고문헌 (80)

  1. Penteado ED , Fernandez‐Marchante CM , Zaiat M , Cañizares P , Gonzalez ER and Rodrigo MA , Influence of sludge age on the performance of MFC treating winery wastewater . Chemosphere 151 : 163 – 170 ( 2016 ). 

  2. D'Angelo A , Mateo S , Scialdone O , Cañizares P , Fernandez‐Morales FJ and Rodrigo MA , Optimization of the performance of an air‐cathode MFC by changing solid retention time . J Chem Technol Biotechnol 92 :1746–1755 ( 2017 ). 

  3. Ledezma P , Greenman J and Ieropoulos I , MFC‐cascade stacks maximise COD reduction and avoid voltage reversal under adverse conditions . Bioresource Technol 134 : 158 – 65 ( 2013 ). 

  4. Sun G , Thygesen A and Meyer AS , Acetate is a superior substrate for microbial fuel cell initiation preceding bioethanol effluent utilization . Appl Microbiol Biotechnol 99 : 4905 – 4915 ( 2015 ). 

  5. Mateo S , Gonzalez del Campo A , Lobato J , Rodrigo M , Cañizares P and Fernandez‐Morales FJ , Long‐term effects of the transient COD concentration on the performance of microbial fuel cells . Biotechnol Progress 32 : 883 – 890 ( 2016 ). 

  6. Sawant SY , Han TH and Cho MH , Metal‐free carbon‐based materials: promising electrocatalysts for oxygen reduction reaction in microbial fuel cells . Int J Mol Sci 18 :25 ( 2017 ). 

  7. Lobato J , Zamora H , Plaza J , Cañizares P and Rodrigo MA , Enhancement of high temperature PEMFC stability using catalysts based on Pt supported on SiC based materials . Appl Catal B: Environ 198 : 516 – 524 ( 2016 ). 

  8. Lefebvre O , Ooi WK , Tang Z , Abdullah‐Al‐Mamun M , Chua DHC and Ng HY , Optimization of a Pt‐free cathode suitable for practical applications of microbial fuel cells . Bioresource Technol 100 : 4907 – 4910 ( 2009 ). 

  9. Lefebvre O , Al‐Mamun A , Ooi WK , Tang Z , Chua DHC and Ng HY , An insight into cathode options for microbial fuel cells . Water Sci Technol 57 : 2031 – 2037 ( 2008 ). 

  10. Chang YY , Zhao HZ , Zhong C and Xue A , Effects of different Pt‐M (M = Fe, Co, Ni) alloy as cathodic catalyst on the performance of two‐chambered microbial fuel cells . Russian J Electrochem 50 : 885 – 890 ( 2014 ). 

  11. Lobato J , Cañizares P , Fernández FJ and Rodrigo MA , An evaluation of aerobic and anaerobic sludges as start‐up material for microbial fuel cell systems . New Biotechnol 29 : 415 – 420 ( 2012 ). 

  12. del Campo AG , Cañizares P , Lobato J , Rodrigo M and Morales FJF , Effects of external resistance on microbial fuel cell's performance . Environment, Energy and Climate Change II , Springer , 175 – 197 ( 2014 ). 

  13. del Campo AG , Lobato J , Cañizares P , Rodrigo MA and Morales FJF , Short‐term effects of temperature and COD in a microbial fuel cell . Appl Energy 101 : 213 – 217 ( 2013 ). 

  14. Chouler J , Padgett GA , Cameron PJ , Preuss K , Titirici MM , Ieropoulos I et al ., Towards effective small scale microbial fuel cells for energy generation from urine . Electrochimica Acta 192 : 89 – 98 ( 2016 ). 

  15. Qian F and Morse DE , Miniaturizing microbial fuel cells . Trends Biotechnol 29 : 62 – 69 ( 2011 ). 

  16. Choi S , Microscale microbial fuel cells: advances and challenges . Biosens Bioelectron 69 : 8 – 25 ( 2015 ). 

  17. Zhao N , Angelidaki I and Zhang Y , Electricity generation and microbial community in response to short‐term changes in stack connection of self‐stacked submersible microbial fuel cell powered by glycerol . Water Res 109 : 367 – 374 ( 2017 ). 

  18. Ieropoulos IA , Greenman J and Melhuish C , Miniature microbial fuel cells and stacks for urine utilisation . Int J Hydrogen Energy 38 : 492 – 496 ( 2013 ). 

  19. Ieropoulos I , Greenman J and Melhuish C , Microbial fuel cells based on carbon veil electrodes: stack configuration and scalability . Int J Energy Res 32 : 1228 – 1240 ( 2008 ). 

  20. Venkata Mohan S , Veer Raghavulu S and Sarma PN , Influence of anodic biofilm growth on bioelectricity production in single chambered mediatorless microbial fuel cell using mixed anaerobic consortia . Biosens Bioelectron 24 : 41 – 47 ( 2008 ). 

  21. Dumas C , Basseguy R and Bergel A , DSA to grow electrochemically active biofilms of Geobacter sulfurreducens . Electrochimica Acta 53 : 3200 – 3209 ( 2008 ). 

  22. Schröder U , Anodic electron transfer mechanisms in microbial fuel cells and their energy efficiency . Phys Chem Chem Phys 9 : 2619 – 2629 ( 2007 ). 

  23. Reguera G , Nevin KP , Nicoll JS , Covalla SF , Woodard TL and Lovley DR , Biofilm and nanowire production leads to increased current in Geobacter sulfurreducens fuel cells . Appl Environ Microbiol 72 : 7345 – 7348 ( 2006 ). 

  24. Liu H , Cheng S and Logan BE , Production of electricity from acetate or butyrate using a single‐chamber microbial fuel cell . Environ Sci Technol 39 : 658 – 662 ( 2005 ). 

  25. Rabaey K , Boon N , Siciliano SD , Verhaege M and Verstraete W , Biofuel cells select for microbial consortia that self‐mediate electron transfer . Appl Environ Microbiol 70 : 5373 – 5382 ( 2004 ). 

  26. Karra U , Huang G , Umaz R , Tenaglier C , Wang L and Li B , Stability characterization and modeling of robust distributed benthic microbial fuel cell (DBMFC) system . Bioresource Technol 144 : 477 – 484 ( 2013 ). 

  27. Kim JR , Beecroft NJ , Varcoe JR , Dinsdale RM , Guwy AJ , Slade RCT et al ., Spatiotemporal development of the bacterial community in a tubular longitudinal microbial fuel cell . Appl Microbiol Biotechnol 90 : 1179 – 1191 ( 2011 ). 

  28. Cercado B , Byrne N , Bertrand M , Pocaznoi D , Rimboud M , Achouak W et al ., Garden compost inoculum leads to microbial bioanodes with potential‐independent characteristics . Bioresour Tecnhol 134 : 276 – 284 ( 2013 ). 

  29. Miceli Iii JF , Parameswaran P , Kang D‐W , Krajmalnik‐Brown R and Torres CsI , Enrichment and analysis of anode‐respiring bacteria from diverse anaerobic inocula . Environ Sci & Technol 46 : 10349 – 10355 ( 2012 ). 

  30. Schamphelaire LD , Bossche LVD , Dang HS , Höfte M , Boon N , Rabaey K et al ., Microbial fuel cells generating electricity from rhizodeposits of rice plants . Environ Sci & Technol 42 : 3053 – 3058 ( 2008 ). 

  31. Rousseau R , Santaella C , Achouak W , Godon JJ , Bonnafous A , Bergel A et al ., Correlation of the electrochemical kinetics of high‐salinity‐tolerant bioanodes with the structure and microbial composition of the biofilm . ChemElectroChem 1 : 1966 – 1975 ( 2014 ). 

  32. Sulonen MLK , Kokko ME , Lakaniemi A‐M and Puhakka JA , Electricity generation from tetrathionate in microbial fuel cells by acidophiles . J Hazard Mater 284 : 182 – 189 ( 2015 ). 

  33. Mäkinen AE , Lay C‐H , Nissilä ME and Puhakka JA , Bioelectricity production on xylose with a compost enrichment culture . Int J Hydrogen Energy 38 : 15606 – 15612 ( 2013 ). 

  34. Sun G , Rodrigues DDS , Thygesen A , Daniel G , Fernando D and Meyer AS , Inocula selection in microbial fuel cells based on anodic biofilm abundance of Geobacter sulfurreducens . Chinese J Chem Eng 24 : 379 – 387 ( 2016 ). 

  35. Richter H , McCarthy K , Nevin KP , Johnson JP , Rotello VM and Lovley DR , Electricity generation by Geobacter sulfurreducens attached to gold electrodes . Langmuir 24 : 4376 – 4379 ( 2008 ). 

  36. Zhang W , Wu H and Hsing IM , Real‐time label‐free monitoring of Shewanella oneidensis MR‐1 biofilm formation on electrode during bacterial electrogenesis using scanning electrochemical microscopy . Electroanalysis 27 : 648 – 655 ( 2015 ). 

  37. Sacco NJ , Figuerola ELM , Pataccini G , Bonetto MC , Erijman L and Cortón E , Performance of planar and cylindrical carbon electrodes at sedimentary microbial fuel cells . Bioresource Technol 126 : 328 – 335 ( 2012 ). 

  38. Martins G , Peixoto L , Ribeiro DC , Parpot P , Brito AG and Nogueira R , Towards implementation of a benthic microbial fuel cell in lake Furnas (Azores): phylogenetic affiliation and electrochemical activity of sediment bacteria . Bioelectrochemistry 78 : 67 – 71 ( 2010 ). 

  39. Ketep SF , Bergel A , Bertrand M , Barakat M , Achouak W and Fourest E , Forming microbial anodes with acetate addition decreases their capability to treat raw paper mill effluent . Bioresource Technol 164 : 285 – 291 ( 2014 ). 

  40. Zhang T , Bain TS , Barlett MA , Dar SA , Snoeyenbos‐West OL , Nevin KP et al ., Sulfur oxidation to sulfate coupled with electron transfer to electrodes by Desulfuromonas strain TZ1 . Microbiology 160 : 123 – 129 ( 2014 ). 

  41. Badalamenti JP , Summers ZM , Chan CH , Gralnick JA and Bond DR , Isolation and genomic characterization of ‘ Desulfuromonas soudanensis WTL’, a metal‐and electrode‐respiring bacterium from anoxic deep subsurface brine . Frontiers Microbiol 7 :913 ( 2016 ). 

  42. Varanasi JL , Sinha P and Das D , Maximizing power generation from dark fermentation effluents in microbial fuel cell by selective enrichment of exoelectrogens and optimization of anodic operational parameters . Biotechnol Lett 39 :721–730 ( 2017 ). 

  43. Hodgson DM , Smith A , Dahale S , Stratford JP , Li JV , Grüning A et al ., Segregation of the anodic microbial communities in a microbial fuel cell cascade . Frontiers Microbiol 7 :699 ( 2016 ). 

  44. He GQ , Kong Q , Chen QH and Ruan H , Batch and fed‐batch production of butyric acid by Clostridium butyricum ZJUCB . J Zhejiang University: Sci 6B : 1076 – 1080 ( 2005 ). 

  45. Li J , Yuan L , Liu Z and Zhou G , Effect of microbial fermentation on electricity production of microbial fuel cells . Chinese J Environ Eng 10 : 4049 – 4054 ( 2016 ). 

  46. Lee Y‐Y , Kim TG and Cho K‐S , Characterization of the COD removal, electricity generation, and bacterial communities in microbial fuel cells treating molasses wastewater . J Environ Sci Health, Part A 51 : 1131 – 1138 ( 2016 ). 

  47. Park HS , Kim BH , Kim HS , Kim HJ , Kim GT , Kim M et al ., A novel electrochemically active and Fe (III)‐reducing bacterium phylogenetically related to Clostridium butyricum isolated from a microbial fuel cell . Anaerobe 7 : 297 – 306 ( 2001 ). 

  48. Ho IP , Sanchez D , Sung KC and Yun M , Racterial communities on electron‐ream Pt‐deposited electrodes in a mediator‐less microbial fuel cell . Environ Sci Technol 42 : 6243 – 6249 ( 2008 ). 

  49. Michaelidou U , Ter Heijne A , Euverink GJW , Hamelers HVM , Stams AJM and Geelhoed JS , Microbial communities and electrochemical performance of titanium‐based anodic electrodes in a microbial fuel cell . Appl Environ Microbiol 77 : 1069 – 1075 ( 2011 ). 

  50. Rodrigo M , Seco A , PenyaRoja J and Ferrer J , Influence of sludge age on enhanced phosphorus removal in biological systems . Water Sci Technol 34 : 41 – 48 ( 1996 ). 

  51. Park D and Zeikus J , Impact of electrode composition on electricity generation in a single‐compartment fuel cell using Shewanella putrefaciens . Appl Microbiol Biotechnol 59 : 58 – 61 ( 2002 ). 

  52. Rodríguez Mayor L , Villaseñor Camacho J and Fernández Morales FJ , Operational optimisation of pilot scale biological nutrient removal at the Ciudad Real (Spain) domestic wastewater treatment plant . Water Air Soil Pollut 152 : 279 – 296 2004 ). 

  53. Zhang Y , Ng CK , Cohen Y and Cao B , Cell growth and protein expression of Shewanella oneidensis in biofilms and hydrogel‐entrapped cultures . Molec BioSyst 10 : 1035 – 1042 ( 2014 ). 

  54. Holmes DE , Giloteaux L , Barlett M , Chavan MA , Smith JA , Williams KH et al ., Molecular analysis of the in situ growth rates of subsurface geobacter species . Appl Environ Microbiol 79 : 1646 – 1653 ( 2013 ). 

  55. Mateo S , D'Angelo A , Scialdone O , Canizares P , Andres Rodrigo M and Jesus Fernandez‐Morales F , The influence of sludge retention time on mixed culture microbial fuel cell start‐ups . Biochem Eng J 123 : 38 – 44 ( 2017 ). 

  56. D'Angelo A , Mateo S , Scialdone O , Canizares P , Jesus Fernandez‐Morales F and Andres Rodrigo M , Optimization of the performance of an air‐cathode MFC by changing solid retention time . J Chem Technol Biotechnol 92 : 1746 – 1755 ( 2017 ). 

  57. Penteado ED , Maria Fernandez‐Marchante C , Zaiat M , Canizares P , Gonzalez ER and Andres Rodrigo M , Influence of sludge age on the performance of MFC treating winery wastewater . Chemosphere 151 : 163 – 170 ( 2016 ). 

  58. Asensio Y , Montes IB , Fernandez‐Marchante CM , Lobato J , Canizares P and Rodrigo MA , Selection of cheap electrodes for two‐compartment microbial fuel cells . J Electroanalyt Chem 785 : 235 – 240 ( 2017 ). 

  59. Mateo S , Rodrigo M , Fonseca LP , Cañizares P and Fernandez‐Morales FJ , Oxygen availability effect on the performance of air‐breathing cathode microbial fuel cell . Biotechnol Progress 31 : 900 – 907 ( 2015 ). 

  60. Logan BE , Hamelers B , Rozendal R , Schröder U , Keller J , Freguia S et al ., Microbial fuel cells: methodology and technology . Environ Sci & Technol. 40 : 5181 – 5192 ( 2006 ). 

  61. Water Environment F , Water Pollution Control F , American Water Works A, American Public Health A. Standard methods for the examination of water and wastewater. 1905:v. 

  62. Schmieder R and Edwards R , Quality control and preprocessing of metagenomic datasets . Bioinformatics 27 : 863 – 864 ( 2011 ). 

  63. Aronesty E , ea‐utils: command‐line tools for processing biological sequencing data . Expression Analysis , Durham, NC ( 2011 ). 

  64. Edgar RC , Haas BJ , Clemente JC , Quince C and Knight R , UCHIME improves sensitivity and speed of chimera detection . Bioinformatic 27 : 2194 – 2200 ( 2011 ). 

  65. Cole JR , Wang Q , Cardenas E , Fish J , Chai B , Farris RJ et al ., The Ribosomal Database Project: improved alignments and new tools for rRNA analysis . Nucleic Acids Res 37 : D141 – D145 ( 2008 ). 

  66. Asensio Y , Montes IB , Fernandez‐Marchante CM , Lobato J , Cañizares P and Rodrigo MA , Selection of cheap electrodes for two‐compartment microbial fuel cells . J Electroanalyt Chem 785 : 235 – 240 ( 2017 ). 

  67. Schilirò T , Tommasi T , Armato C , Hidalgo D , Traversi D , Bocchini S et al ., The study of electrochemically active planktonic microbes in microbial fuel cells in relation to different carbon‐based anode materials . Energy 106 : 277 – 284 ( 2016 ). 

  68. Hidalgo D , Tommasi T , Velayutham K and Ruggeri B , Long term testing of microbial fuel cells: comparison of different anode materials . Bioresource Technol 219 : 37 – 44 ( 2016 ). 

  69. Fan Y , Hu H and Liu H , Enhanced Coulombic efficiency and power density of air‐cathode microbial fuel cells with an improved cell configuration . J Power Sources 171 : 348 – 354 ( 2007 ). 

  70. Ringeisen BR , Henderson E , Wu PK , Pietron J , Ray R , Little B et al ., High power density from a miniature microbial fuel cell using Shewanella oneidensis DSP10 . Environ Sci & Technol 40 : 2629 – 2634 ( 2006 ). 

  71. Han Y , Yu C and Liu H , A microbial fuel cell as power supply for implantable medical devices . Biosensors Bioelectron 25 : 2156 – 2160 ( 2010 ). 

  72. Hidalgo D , Tommasi T , Bocchini S , Chiolerio A , Chiodoni A , Mazzarino I et al ., Surface modification of commercial carbon felt used as anode for microbial fuel cells . Energy 99 : 193 – 201 ( 2016 ). 

  73. Fan Y , Sharbrough E and Liu H , Quantification of the internal resistance distribution of microbial fuel cells . Environ Sci Technol 42 : 8101 – 8107 ( 2008 ). 

  74. Beckmann S , Welte C , Li X , Oo YM , Kroeninger L , Heo Y et al ., Novel phenazine crystals enable direct electron transfer to methanogens in anaerobic digestion by redox potential modulation . Energy Environ Sci 9 : 644 – 655 ( 2016 ). 

  75. Yin Q , Zhu X , Zhan G , Bo T , Yang Y , Tao Y et al ., Enhanced methane production in an anaerobic digestion and microbial electrolysis cell coupled system with co‐cultivation of Geobacter and Methanosarcina . J Environ Sci (China) 42 : 210 – 214 ( 2016 ). 

  76. Dang Y , Holmes DE , Zhao Z , Woodard TL , Zhang Y , Sun D et al ., Enhancing anaerobic digestion of complex organic waste with carbon‐based conductive materials . Bioresource Technol 220 : 516 – 522 ( 2016 ). 

  77. Sun R , Zhou A , Jia J , Liang Q , Liu Q , Xing D et al ., Characterization of methane production and microbial community shifts during waste activated sludge degradation in microbial electrolysis cells . Bioresource Technol 175 : 68 – 74 ( 2015 ). 

  78. Wu D , Xing D , Mei X , Liu B , Guo C and Ren N , Electricity generation by Shewanella sp. HN‐41 in microbial fuel cells . Int J Hydrogen Energy 38 : 15568 – 15573 ( 2013 ). 

  79. Bond DR , Holmes DE , Tender LM and Lovley DR , Electrode‐reducing microorganisms that harvest energy from marine sediments . Science 295 : 483 – 485 ( 2002 ). 

  80. Park T‐J , Ding W , Cheng S , Brar MS , Ma APY , Tun HM et al ., Microbial community in microbial fuel cell (MFC) medium and effluent enriched with purple photosynthetic bacterium ( Rhodopseudomonas sp.) . AMB Express 4 : 1 –8 ( 2014 ). 

관련 콘텐츠

오픈액세스(OA) 유형

GREEN

저자가 공개 리포지터리에 출판본, post-print, 또는 pre-print를 셀프 아카이빙 하여 자유로운 이용이 가능한 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로