$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Structural insight into molecular mechanism of poly(ethylene terephthalate) degradation 원문보기

Nature communications, v.9 no.1, 2018년, pp.382 -   

Joo, Seongjoon (School of Life Sciences (KNU Creative BioResearch Group), KNU Institute for Microorganisms, Kyungpook National University, Daehak-ro 80, Buk-gu, Daegu, 41566 Republic of Korea) ,  Cho, In Jin (Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Plus Program), BioProcess Engineering Research Center, and KAIST Institute (KI) for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141 Republic of Korea) ,  Seo, Hogyun (School of Life Sciences (KNU Creative BioResearch Group), KNU Institute for Microorganisms, Kyungpook National University, Daehak-ro 80, Buk-gu, Daegu, 41566 Republic of Korea) ,  Son, Hyeoncheol Francis (School of Life Sciences (KNU Creative BioResearch Group), KNU Institute for Microorganisms, Kyungpook National University, Daehak-ro 80, Buk-gu, Daegu, 41566 Republic of Korea) ,  Sagong, Hye-Young (School of Life Sciences (KNU Creative BioResearch Group), KNU Institute for Microorganisms, Kyungpook National Univer) ,  Shin, Tae Joo ,  Choi, So Young ,  Lee, Sang Yup ,  Kim, Kyung-Jin

Abstract AI-Helper 아이콘AI-Helper

Plastics, including poly(ethylene terephthalate) (PET), possess many desirable characteristics and thus are widely used in daily life. However, non-biodegradability, once thought to be an advantage offered by plastics, is causing major environmental problem. Recently, a PET-degrading bacterium, Ideo...

참고문헌 (44)

  1. 1. Association of Plastic Manufacturers, Brussels. Plastics Europe. Plastics—the Facts 2016—An analysis of European plastics production, demand and waste data. Available at http://www.plasticseurope.org/Document/plastics---the-facts-2016-15787.aspx?FolID=2  (2016). 

  2. 2. Rochman CM Policy: classify plastic waste as hazardous Nature 2013 494 169 171 10.1038/494169a 23407523 

  3. 3. Sinha V Patel MR Patel JV PET waste management by chemical recycling: a review J. Polym. Environ. 2010 18 8 25 10.1007/s10924-008-0106-7 

  4. 4. Marshall I Todd A The thermal degradation of polyethylene terephthalate Trans. F. Soc. 1953 49 67 78 10.1039/tf9534900067 

  5. 5. Tokiwa Y Calabia BP Ugwu CU Aiba S Biodegradability of plastics Int. J. Mol. Sci. 2009 10 3722 3742 10.3390/ijms10093722 19865515 

  6. 6. National Park Service, U.S. Department of the Interior. Time it takes for garbage to decompose in the environment. Available at https://www.des.nh.gov/organization/divisions/water/wmb/coastal/trash/documents/marine_debris.pdf. 

  7. 7. Chen S Identification and characterization of bacterial cutinase J. Biol. Chem. 2008 283 25854 25862 10.1074/jbc.M800848200 18658138 

  8. 8. Ribitsch D Hydrolysis of polyethylene terephthalate by p‐nitrobenzylesterase from Bacillus subtilis Biotechnol. Prog. 2011 27 951 960 10.1002/btpr.610 21574267 

  9. 9. de Castro, A. M., Carniel, A., Junior, J. N., da Conceição Gomes, A. & Valoni, É. Screening of commercial enzymes for poly (ethylene terephthalate) (PET) hydrolysis and synergy studies on different substrate sources. J. Ind. Microbiol. Biotechnol . 44 , 835-844 (2017). 

  10. 10. Wei R Zimmermann W Biocatalysis as a green route for recycling the recalcitrant plastic polyethylene terephthalate Microb. Biotechnol. 2017 10 1302 1307 10.1111/1751-7915.12714 28401691 

  11. 11. Herrero Acero E Surface engineering of a cutinase from Thermobifida cellulosilytica for improved polyester hydrolysis Biotechnol. Bioeng. 2013 110 2581 2590 10.1002/bit.24930 23592055 

  12. 12. Silva C Engineered Thermobifida fusca cutinase with increased activity on polyester substrates Biotechnol. J. 2011 6 1230 1239 10.1002/biot.201000391 21751386 

  13. 13. Then J Ca2+ and Mg2+ binding site engineering increases the degradation of polyethylene terephthalate films by polyester hydrolases from Thermobifida fusca Biotechnol. J. 2015 10 592 598 10.1002/biot.201400620 25545638 

  14. 14. Then J A disulfide bridge in the calcium binding site of a polyester hydrolase increases its thermal stability and activity against polyethylene terephthalate FEBS Open Biol 2016 6 425 432 10.1002/2211-5463.12053 

  15. 15. Barth M A dual enzyme system composed of a polyester hydrolase and a carboxylesterase enhances the biocatalytic degradation of polyethylene terephthalate films Biotechnol. J. 2016 11 1082 1087 10.1002/biot.201600008 27214855 

  16. 16. Carniel A Valoni Eacute Nicomedes J da Conceição Gomes A de Castro AM Lipase from Candida antarctica (CALB) and cutinase from Humicola insolens act synergistically for PET hydrolysis to terephthalic acid Process Biochem. 2016 59 84 90 10.1016/j.procbio.2016.07.023 

  17. 17. Yoshida S A bacterium that degrades and assimilates poly(ethylene terephthalate) Science 2016 351 1196 1199 10.1126/science.aad6359 26965627 

  18. 18. Bornscheuer UT Feeding on plastic Science 2016 351 1154 1155 10.1126/science.aaf2853 26965614 

  19. 19. Yang Y Yang J Jiang L Comment on “A bacterium that degrades and assimilates poly(ethylene terephthalate)” Science 2016 353 759 759 10.1126/science.aaf8305 27540159 

  20. 20. Yoshida S Response to comment on “A bacterium that degrades and assimilates poly(ethylene terephthalate)” Science 2016 353 759 759 10.1126/science.aaf8625 27540160 

  21. 21. Han et al. Structural insight into catalytic mechanism of PET hydrolase. Nat. Commun . 8 , 2106 (2017). 

  22. 22. Ollis DL The alpha/beta hydrolase fold Protein Eng. 1992 5 197 211 10.1093/protein/5.3.197 1409539 

  23. 23. Kourist R The α/β-hydrolase fold 3DM database (ABHBD) as a tool for protein engineering Chembiochem 2010 11 1635 1643 10.1002/cbic.201000213 20593436 

  24. 24. Rauwerdink A Kazlauskas RJ How the same core catalytic machinery catalyzes 17 different reactions: the serine-histidine-aspartate catalytic triad of α/β-hydrolase fold enzymes ACS Catal. 2015 5 6153 6176 10.1021/acscatal.5b01539 28580193 

  25. 25. Holm L Sander C Touring protein fold space with Dali/FSSP Nucleic Acids Res. 1998 26 316 319 10.1093/nar/26.1.316 9399863 

  26. 26. Roth C Structural and functional studies on a thermostable polyethylene terephthalate degrading hydrolase from Thermobifida fusca Appl. Microbiol. Biotechnol. 2014 98 7815 7823 10.1007/s00253-014-5672-0 24728714 

  27. 27. Miyakawa T Structural basis for the Ca2+-enhanced thermostability and activity of PET-degrading cutinase-like enzyme from Saccharomonospora viridis AHK190 Appl. Microbiol. Biotechnol. 2015 99 4297 4307 10.1007/s00253-014-6272-8 25492421 

  28. 28. Thumarat U Nakamura R Kawabata T Suzuki H Kawai F Biochemical and genetic analysis of a cutinase-type polyesterase from a thermophilic Thermobifida alba AHK119 Appl. Microbiol. Biotechnol. 2012 95 419 430 10.1007/s00253-011-3781-6 22183084 

  29. 29. Uchida H Shigeno-Akutsu Y Nomura N Nakahara T Nakajima-Kambe T Cloning and sequence analysis of poly (tetramethylene succinate) depolymerase from Acidovorax delafieldii strain BS-3 J. Biosci. Bioeng. 2002 93 245 247 10.1016/S1389-1723(02)80022-6 16233195 

  30. 30. Tang B Yu Y Zhang Y Zhao G Ding X Complete genome sequence of the glidobactin producing strain [Polyangium] brachysporum DSM 7029 J. Biotechnol. 2015 210 83 84 10.1016/j.jbiotec.2015.06.417 26142061 

  31. 31. Anantharaman, K. et al. Thousands of microbial genomes shed light on interconnected biogeochemical processes in an aquifer system. Nat. Commun . 7 , 13219 (2016). 

  32. 32. Otwinowski Z Minor W [20] Processing of X-ray diffraction data collected in oscillation mode Meth. Enzymol. 1997 276 307 326 10.1016/S0076-6879(97)76066-X 

  33. 33. Matthews BW Solvent content of protein crystals J. Mol. Biol. 1968 33 491 497 10.1016/0022-2836(68)90205-2 5700707 

  34. 34. Vagin A Teplyakov A Molecular replacement with MOLREP Acta Crystallogr. D. Biol. Crystallogr. 2010 66 22 25 10.1107/S0907444909042589 20057045 

  35. 35. Emsley P Cowtan K Coot: model-building tools for molecular graphics Acta Crystallogr. D. Biol. Crystallogr. 2004 60 2126 2132 10.1107/S0907444904019158 15572765 

  36. 36. Murshudov GN Vagin AA Dodson EJ Refinement of macromolecular structures by the maximum-likelihood method Acta Crystallogr. D. Biol. Crystallogr. 1997 53 240 255 10.1107/S0907444996012255 15299926 

  37. 37. Park SY Ha SC Kim YG The protein crystallography beamlines at the pohang light source II Biodesign 2017 5 30 34 

  38. 38. Morris GM AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility J. Comput. Chem. 2009 30 2785 2791 10.1002/jcc.21256 19399780 

  39. 39. Trott O Olson AJ AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading J. Comput. Chem. 2010 31 455 461 19499576 

  40. 40. SchuÈttelkopf AW Van Aalten DM PRODRG: a tool for high-throughput crystallography of protein–ligand complexes Acta Crystallogr. D. Biol. Crystallogr. 2004 60 1355 1363 10.1107/S0907444904011679 15272157 

  41. 41. Bianco G Forli S Goodsell DS Olson AJ Covalent docking using autodock: two-point attractor and flexible side chain methods Protein Sci. 2016 25 295 301 10.1002/pro.2733 26103917 

  42. 42. Harder E OPLS3: a force field providing broad coverage of drug-like small molecules and proteins J. Chem. Theory Comput. 2016 12 281 296 10.1021/acs.jctc.5b00864 26584231 

  43. 43. Le SQ Gascuel O An improved general amino acid replacement matrix Mol. Biol. Evol. 2008 25 1307 1320 10.1093/molbev/msn067 18367465 

  44. 44. Kumar S Stecher G Tamura K MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets Mol. Biol. Evol. 2016 33 1870 1874 10.1093/molbev/msw054 27004904 

LOADING...

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로