$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Development and evaluation of the bacterial fate and transport module for the Agricultural Policy/Environmental eXtender (APEX) model

The Science of the total environment, v.615, 2018년, pp.47 - 58  

Hong, Eun-Mi (USDA-ARS, Environmental Microbial and Food Safety Lab, 10300 Baltimore Avenue, BARC-East Bldg. 173, Beltsville, MD 20705, USA) ,  Park, Yongeun (USDA-ARS, Environmental Microbial and Food Safety Lab, 10300 Baltimore Avenue, BARC-East Bldg. 173, Beltsville, MD 20705, USA) ,  Muirhead, Richard (Farm Systems & Environment, AgResearch Ltd, Invermay Research Centre, Private Bag 50034, Mosgiel 9053, New Zealand) ,  Jeong, Jaehak (Texas A&M AgriLife Research, Temple, TX 76502, USA) ,  Pachepsky, Yakov A. (USDA-ARS, Environmental Microbial and Food Safety Lab, 10300 Baltimore Avenue, BARC-East Bldg. 173, Beltsville, MD 20705, USA)

Abstract AI-Helper 아이콘AI-Helper

The Agricultural Policy/Environmental eXtender (APEX) is a watershed-scale water quality model that includes detailed representation of agricultural management. The objective of this work was to develop a process-based model for simulating the fate and transport of manure-borne bacteria on land and ...

주제어

참고문헌 (85)

  1. Food Control Anderson 22 12 1865 2011 10.1016/j.foodcont.2011.04.028 Pathogen-produce pair attribution risk ranking tool to prioritize fresh produce commodity and pathogen combinations for further evaluation (P3ARRT) 

  2. Baffaut 2003 Proc Total Maximum Daily Load (TMDL) Environmental Regulations II A bacteria TMDL for Shoal Creek using SWAT modeling and DNA source tracking 

  3. Water Resour. Res. Bagnold 13 2 303 1977 10.1029/WR013i002p00303 Bed-load transport by natural rivers 

  4. Trans. ASABE Benham 49 4 987 2006 10.13031/2013.21739 Modeling bacteria fate and transport in watershed models to support TMDLs 

  5. Water Res. Blaustein 47 569 2013 10.1016/j.watres.2012.10.027 E. coli survival in waters: temperature dependence 

  6. J. Am. Water Res. Assoc. Bougeard 47 2 350 2011 10.1111/j.1752-1688.2010.00520.x Modeling of Escherichia coli fluxes on a catchment and the impact on coastal water and shellfish quality 

  7. Curr. Issues Intest. Microbiol. Branham 6 25 2005 E. coli O157 and Salmonella spp. in white-tailed deer and livestock 

  8. Environ. Model. Assess. Campolongo 22 1509 2007 10.1016/j.envsoft.2006.10.004 An effective screening design for sensitivity analysis of large models 

  9. Int. J. Food Microbiol. Ceuppens 181 2 67 2014 10.1016/j.ijfoodmicro.2014.04.025 Microbiological quality and safety assessment of lettuce production in Brazil 

  10. Trans. ASABE Chin 52 1 145 2009 10.13031/2013.25955 Watershed-scale fate and transport of bacteria 

  11. Water Res. Cho 46 4750 2012 10.1016/j.watres.2012.05.057 The modified SWAT model for predicting fecal coliforms in the Wachusett Reservoir Watershed, USA 

  12. J. Hydrol. Cho 535 377 2016 10.1016/j.jhydrol.2016.01.084 Modeling seasonal variability of fecal coliform in natural surface waters using the modified SWAT 

  13. Agric. Ecosyst. Environ. Clague 202 188 2015 10.1016/j.agee.2015.01.011 Evaluation of the stable isotope signatures of nitrate to detect denitrification in a shallow groundwater system in New Zealand 

  14. Agric. Water Manag. Coffey 97 101 2010 10.1016/j.agwat.2009.08.017 Development of a pathogen transport model for Irish catchments using SWAT 

  15. Hum. Ecol. Risk. Assess. Coffey 19 232 2013 10.1080/10807039.2012.701983 Modeling of pathogen indicator organisms in a small-scale agricultural catchment using SWAT 

  16. Water Res. Collins 38 3 700 2004 10.1016/j.watres.2003.10.045 Modelling bacterial water quality in streams draining pastoral land 

  17. Water Res. Crabill 33 2163 1999 10.1016/S0043-1354(98)00437-0 The impact of sediment fecal coliform reservoirs on seasonal water quality in Oak Creek, Arizona 

  18. Int. J. Performability Eng. Desai 7 165 2011 Nature of reversed hazard rate: an investigation 

  19. EPA-Region4 2000 Total Maximum Daily Load (TMDL) Development for Fecal Coliform in the Butler Creek Watershed in the Savannah River Basin 

  20. Environ. Microbiol. Franz 10 2 313 2008 10.1111/j.1462-2920.2007.01453.x Manure-amended soil characteristics affecting the survival of E. coli O157: H7 in 36 Dutch soils 

  21. Trans. ASABE Gassman 53 3 711 2010 10.13031/2013.30078 The Agricultural Policy/Environmental eXtender (APEX) model: an emerging tool for landscape and watershed environmental analyses 

  22. WEF Proc. Gautam 2006 9 3851 2006 Determination of fecal coliform loading and its impact on river water quality for TMDL development 

  23. Water Res. Ghimire 47 3 1329 2013 10.1016/j.watres.2012.11.051 Hydrograph-based approach to modeling bacterial fate and transport in rivers 

  24. Water Resour. Res. Grant 47 2011 10.1029/2010WR009460 Measuring and modeling the flux of fecal bacteria across the sediment-water interface in a turbulent stream 

  25. Water Resour. Res. Grant 48 2012 10.1029/2011WR011148 Effective diffusivity and mass flux across the sediment-water interface in streams 

  26. Hydrol. Process. Guber 25 15 2393 2011 10.1002/hyp.8003 Uncertainty in modelling of faecal coliform overland transport associated with manure application in Maryland 

  27. J. Hydrol. Guber 519 644 2014 10.1016/j.jhydrol.2014.08.005 Modeling runoff and microbial overland transport with KINEROS2/STWIR model: accuracy and uncertainty as affected by source of infiltration parameters 

  28. Environ. Model. Softw. Guber 80 185 2016 10.1016/j.envsoft.2016.02.024 Model of pathogen transmission between livestock and white-tailed deer in fragmented agricultural and forest landscapes 

  29. Int. J. Food Microbiol. Holvoet 171 21 2014 10.1016/j.ijfoodmicro.2013.11.009 Relationships among hygiene indicators and enteric pathogens in irrigation water, soil and lettuce and the impact of climatic conditions on contamination in the lettuce primary production 

  30. J. Environ. Manag. Hong 187 253 2017 10.1016/j.jenvman.2016.11.054 Modeling the interannual variability of microbial quality metrics of irrigation water in a Pennsylvania stream 

  31. J. Environ. Manag. Hruby 171 60 2016 10.1016/j.jenvman.2016.01.040 Effects of tillage and poultry manure application rates on Salmonella and fecal indicator bacteria concentrations in tiles draining Des Moines Lobe Soils 

  32. Joe 2009 Hangman (Latah) Creek Watershed Fecal Coliform, Temperature, and Turbidity Total Maximum Daily Load, Water Quality Improvement Report 

  33. Kay 197 2012 World Health Organization (WHO). Animal Waste, Water Quality and Human Health Effectiveness of best management practices for attenuating the transport of livestock-derived pathogens within catchments 

  34. Ecol. Model. Kim 221 1592 2010 10.1016/j.ecolmodel.2010.03.005 Effect of streambed bacteria release on E. coli concentrations: monitoring and modeling with the modified SWAT 

  35. Plant Soil Kleinman 349 169 2011 10.1007/s11104-011-0832-9 Managing agricultural phosphorus for water quality protection: principles for progress 

  36. LCDB 

  37. Int. J. Food Microbiol. Liu 163 2-3 119 2013 10.1016/j.ijfoodmicro.2013.02.026 Impacts of climate change on the microbial safety of pre-harvest leafy green vegetables as indicated by Escherichia coli O157 and Salmonella spp 

  38. Environ. Int. Martinez 54 1 2013 10.1016/j.envint.2012.12.013 Using the Q10 model to simulate E. coli survival in cowpats on grazing lands 

  39. Ecol. Model. McBride 222 2093 2011 10.1016/j.ecolmodel.2011.04.008 New hydroepidemiological models of indicator organisms and zoonotic pathogens in agricultural watersheds 

  40. J. Environ. Qual. Meals 35 1088 2006 10.2134/jeq2005.0380 Demonstration of methods to reduce E. coli runoff from dairy manure application sites 

  41. Trans. ASABE Moriasi 50 3 885 2007 10.13031/2013.23153 Model evaluation guidelines for systematic quantification of accuracy in watershed simulations 

  42. Technometrics Morris 33 2 161 1991 10.1080/00401706.1991.10484804 Fractorial sampling plans for preliminary computational experiments 

  43. N. Z. J. Agric. Res. Muirhead 52 1 2009 10.1080/00288230909510483 Soil and faecal material reservoirs of Escherichia coli in a grazed pasture 

  44. Muirhead 2014 Integrating microbial water quality impacts into existing decision support tools 

  45. J. Environ. Qual. Muirhead 44 1 248 2015 10.2134/jeq2014.07.0311 A farm-scale risk-index for reducing fecal contamination of surface waters 

  46. Environ. Int. Muirhead 40 1 8 2012 10.1016/j.envint.2011.11.009 A two reservoir model to predict Escherichia coli losses to water from pastures grazed by dairy cows 

  47. Water Res. Muirhead 38 1215 2004 10.1016/j.watres.2003.12.010 Faecal bacteria yields in artificial flood events: quantifying in-stream stores 

  48. Appl. Environ. Microbiol. Muirhead 71 2875 2005 10.1128/AEM.71.6.2875-2879.2005 Erosion and subsequent transport state of Escherichia coli from cowpats 

  49. Water Res. Muirhead 45 9 2863 2011 10.1016/j.watres.2011.03.001 A model framework to assess the effect of dairy farms and wild fowl on microbial water quality during base-flow conditions 

  50. J. Hydrol. Nash 27 3 282 1970 10.1016/0022-1694(70)90255-6 River flow forecasting through conceptual models. Part I-a discussion of principles 

  51. J. Environ. Manag. Niazi 151 167 2015 10.1016/j.jenvman.2014.12.042 Pathogen transport and fate modeling in the Upper Salem River watershed using SWAT model 

  52. Crit. Rev. Environ. Sci. Technol. Pachepsky 41 12 1067 2011 10.1080/10643380903392718 Escherichia coli and fecal coliforms in freshwater and estuarine sediments 

  53. Agric. Water Manage. Pachepsky 86 1 81 2006 10.1016/j.agwat.2006.06.010 Transport and fate of manure-borne pathogens: modeling perspective 

  54. Environ. Monit. Assess. Pachepsky 189 2017 10.1007/s10661-016-5763-8 Enrichment of stream water with fecal indicator organisms during baseflow periods 

  55. Emerg. Infect. Dis. Painter 19 3 407 2013 10.3201/eid1903.111866 Attribution of foodborne illnesses, hospitalizations, and deaths to food commodities by using outbreak data, United States, 1998-2008 

  56. Pandey 2012 Modeling In-stream Escherichia coli Concentrations 

  57. Ecol. Indic. Pandey 641 2012 10.1016/j.ecolind.2012.05.023 Assessing the Impacts of Watershed Indexes and Precipitation on Spatial In-stream E. coli Concentrations 

  58. Water Res. Pandey 46 115 2012 10.1016/j.watres.2011.10.019 A model for predicting resuspension of E. coli from streambed sediments 

  59. J. Am. Water Resour. Assoc. Pandey 42 184 2016 10.1111/1752-1688.12373 Predicting streambed sediment and water column Escherichia coli levels at watershed scale 

  60. Parajuli 2007 SWAT bacteria sub-model evaluation and application 

  61. Bioresour. Technol. Parajuli 100 953 2009 10.1016/j.biortech.2008.06.045 Source specific fecal bacteria modeling using soil and water assessment tool model 

  62. J. Environ. Qual. Park 45 3 949 2016 10.2134/jeq2015.08.0427 Survival of manure-borne Escherichia coli and fecal coliforms in soil: temperature dependence, as affected by site-specific factors 

  63. J. Environ. Qual. Park 46 219 2017 10.2134/jeq2016.03.0114 Escherichia coli release from streambed to water column during baseflow periods: a modeling study 

  64. Sci. Total Environ. Piorkowski 496 402 2014 10.1016/j.scitotenv.2014.06.145 Reach specificity in sediment E. coli population turnover and interaction with waterborne populations 

  65. Sadeghi 56 2002 Total Maximum Daily Load (TMDL) Environmental Regulations A SWAT/microbial submodel for predicting pathogen loadings in surface and groundwater at watershed and basin scales 

  66. Water Res. Shelton 59 316 2014 10.1016/j.watres.2014.04.019 Response of coliform populations in streambed sediment and water column to changes in nutrient concentrations in water 

  67. Trans. ASABE Soupir 51 6 1987 2008 10.13031/2013.25403 Die-off of E. coli and enterococci in dairy cowpats 

  68. Trans. ASABE Srivastava 50 5 1683 2007 10.13031/2013.23961 Landscape models for simulating water quality at point, field, and watershed scales 

  69. J. Am. Water Resour. Assoc. Stefan 29 1 27 1993 10.1111/j.1752-1688.1993.tb01502.x Stream temperature estimation from air temperature 

  70. Appl. Environ. Microbiol. Strawn 79 2 588 2013 10.1128/AEM.02491-12 Landscape and meteorological factors affecting prevalence of three food-borne pathogens in fruit and vegetable farms 

  71. Int. Agric. Eng. J. Tuppad 18 1-2 59 2009 ArcAPEX: ArcGIS interface for Agricultural Policy Environmental eXtender (APEX) hydrology/water quality model 

  72. J. Am. Water Res. Assoc. Vadas 47 877 2011 10.1111/j.1752-1688.2011.00561.x The effect of rain and runoff when assessing timing of manure application and dissolved phosphorus loss in runoff 

  73. J. Hydrol. Van Griensven 324 10 2006 10.1016/j.jhydrol.2005.09.008 A global sensitivity analysis tool for the parameters of multi-variable catchment models 

  74. J. Appl. Microbiol. van Kessel 103 4 1122 2007 10.1111/j.1365-2672.2007.03347.x Survival of Escherichia coli in cowpats in pasture and in laboratory conditions 

  75. J. Environ. Eng. Walker 125 325 1999 10.1061/(ASCE)0733-9372(1999)125:4(325) Fate and transport model of Cryptosporidium 

  76. Trans. ASABE Wang 52 4 1181 2009 10.13031/2013.27794 Modeling the effectiveness of conservation practices at Shoal Creek watershed, Texas, using APEX 

  77. Trans. ASABE Wang 54 4 1281 2011 10.13031/2013.39031 Integrating APEX output for cultivated with SWAT simulation for regional modeling 

  78. Wang 

  79. Trans. ASABE Wang 57 4 1087 2014 An auto-calibration tool for the Agricultural Policy Environmental eXtender (APEX) model 

  80. N. Z. J. Mar. Freshw. Res. Wilcock 33 683 1999 10.1080/00288330.1999.9516911 Water quality of a lowland stream in a New Zealand dairy farming catchment 

  81. N. Z. J. Mar. Freshw. Res. Wilcock 40 123 2006 10.1080/00288330.2006.9517407 Land-use impacts and water quality targets in the intensive dairying catchment of the Toenepi Stream, New Zealand 

  82. Mar. Freshw. Res. Wilcock 64 401 2013 10.1071/MF12155 Trends in water quality of five dairy farming streams in responses to changes in farm management and adoption of best practice: benefits of long-term monitoring at the catchment scale 

  83. N. Z. J. Mar. Freshw. Res. Wilkinson 45 3 369 2011 10.1080/00288330.2011.592839 Modelling storm-event E. coli pulses from the Motueka and Sherry Rivers in the South Island, New Zealand 

  84. Williams 437 2006 Watershed Models The APEX model 

  85. Williams 2012 Agricultural Policy/Environmental eXtender Model: Theoretical Documentation Version 0806 

LOADING...
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로