최소 단어 이상 선택하여야 합니다.
최대 10 단어까지만 선택 가능합니다.
다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
NTIS 바로가기International journal of heat and mass transfer, v.118, 2018년, pp.720 - 733
Vutha, Ashwin Kumar (Department of Mechanical, Aerospace and Nuclear EngineeringRensselaer Polytechnic Institute) , Rozenfeld, Tomer (Department of Mechanical Engineering, Ben-Gurion University of the Negev) , Shin, Jeong-Heon (Department of Extreme Thermal Systems, Korea Institute of Machinery and Materials (KIMM)) , Rao, Sameer (Department of Mechanical Engineering, Massachusetts Institute of Technology) , Wang, Yingying (Department of Mechanical and Aerospace Engineering, University of Central Florida) , Ziskind, Gennady (Department of Mechanical Engineering, Ben-Gurion University of the Negev) , Peles, Yoav (Department of Mechanical and Aerospace Engineering, University of Central Florida)
Abstract Local temperature measurements were made in a microchannel jet impingement cooling system with a single slot jet (Dh = 68 µm and standoff distance of 210 µm). A 40%/60% solution of propylene glycol in deionized water was used as the working fluid. Resistance temperature detect...
J. Heat Transfer Wadsworth 3 114 143 1992 Enhancement of single-phase heat transfer and critical heat flux from an ultra-high-flux simulated microelectronic heat source to a rectangular impinging jet of dielectric liquid
Incropera 457 1994 Cooling of Electronic Systems Single-Phase, Liquid Jet Impingement Cooling of High-Performance Chips
Heat Transfer Eng. Agostini 28 4 258 2007 10.1080/01457630601117799 State of the art of high heat flux cooling technologies
Appl. Therm. Eng. Whelan 29 11-12 2211 2009 10.1016/j.applthermaleng.2008.11.003 Nozzle geometry effects in liquid jet array impingement
Int. J. Heat Mass Transfer Sung 51 17-18 4342 2008 10.1016/j.ijheatmasstransfer.2008.02.023 Single-phase hybrid micro-channel/micro-jet impingement cooling
J. Heat Transfer Browne 132 4 41013 2010 10.1115/1.4000888 Experimental investigation of single-phase microjet array heat transfer
Int. J. Heat Mass Transfer Choo 53 15-16 3366 2010 10.1016/j.ijheatmasstransfer.2010.02.023 Comparison of thermal characteristics of confined and unconfined impinging jets
J. Heat Transfer Hoefler 133 9 91601 2011 10.1115/1.4003827 Heat transfer experiments in a confined jet impingement configuration using transient techniques
Int. J. Heat Mass Transfer Ndao 70 856 2014 10.1016/j.ijheatmasstransfer.2013.11.062 Effects of pin fin shape and configuration on the single-phase heat transfer characteristics of jet impingement on micro pin fins
Int. J. Heat Mass Transfer Hoogendoorn 20 2 1333 1977 10.1016/0017-9310(77)90029-1 The effect of turbulence on heat transfer at a stagnation point
Int. J. Heat Mass Transfer Goldstein 29 8 1227 1986 10.1016/0017-9310(86)90155-9 Streamwise distribution of the recovery factor and the local heat transfer coefficient to an impinging circular air jet
AIChE J. Oh 44 4 769 1998 10.1002/aic.690440402 Liquid jet-array cooling modules for high heat fluxes
J. Electron. Packag. Garimella 123 3 165 2001 10.1115/1.1371923 Local heat transfer distributions in confined multiple air jet impingement
Int. J. Heat Mass Transfer Geers 51 21-22 5389 2008 10.1016/j.ijheatmasstransfer.2008.01.035 Heat transfer correlation for hexagonal and in-line arrays of impinging jets
Int. J. Heat Mass Transfer Lytle 31 12 1687 1994 10.1016/0017-9310(94)90059-0 Air jet impingement heat transfer at low nozzle-plate spacings
Exp. Therm. Fluid Sci. Robinson 32 1 1 2007 10.1016/j.expthermflusci.2006.12.006 An experimental investigation of free and submerged miniature liquid jet array impingement heat transfer
Int. J. Heat Mass Transfer Selimefendigil 69 1 54 2014 10.1016/j.ijheatmasstransfer.2013.10.010 Pulsating nanofluids jet impingement cooling of a heated horizontal surface
Int. J. Heat Mass Transfer Rau 79 432 2014 10.1016/j.ijheatmasstransfer.2014.08.012 Local single- and two-phase heat transfer from an impinging cross-shaped jet
Int. J. Heat Mass Transfer Asadi 79 34 2014 10.1016/j.ijheatmasstransfer.2014.07.090 A review of heat transfer and pressure drop characteristics of single and two-phase microchannels
Renew. Sustain. Energy Rev. Wu 40 11 2014 10.1016/j.rser.2014.07.171 On further enhancement of single-phase and flow boiling heat transfer in micro/minichannels
10.1109/ITHERM.2017.7992526 A.J. Robinson, W. Tan, R. Kempers, J. Colenbrander, N. Bushnell, and R. Chen, An ultra high performance heat sink using a novel hybrid impinging microjet - microchannel structure, in: Proceedings of 16th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm), 2017.
Int. J. Heat Mass Transfer Sparrow 97 4 528 1975 Effect of nozzle - surface separation distance on impingement heat transfer for a jet in a crossflow
J. Heat Transfer Goldstein 112 3 608 1990 10.1115/1.2910430 Effect of entrainment on the heat transfer to a heated circular air jet impinging on a flat surface
Exp. Thermal Fluid Sci. Viskanta 6 111 1993 10.1016/0894-1777(93)90022-B Heat transfer to impinging isothermal gas and flame jets
10.1615/AnnualRevHeatTransfer.v6.60 J.H. Lienhard V, Liquid Jet Impingement, in: C.L. Tien (Ed.), Annual Review of Heat Transfer, Begell House, New York, vol. 6, 1995.
Int. J. Heat Mass Transfer Elison 37 8 1207 1994 10.1016/0017-9310(94)90206-2 Local heat transfer to impinging liquid jets in the initially laminar, transitional, and turbulent regimes
Microscale Thermophys. Eng. Patil 9 2 183 2005 10.1080/10893950590945058 Spatially resolved heat transfer rates in an impinging circular microscale jet
J. Heat Transfer Michna 131 11 111402 2009 10.1115/1.3154750 Single-phase microscale jet stagnation point heat transfer
Int. J. Heat Mass Transfer Fitzgerald 41 8-9 1025 1998 10.1016/S0017-9310(97)00205-6 A study of the flow field of a confined and submerged impinging jet
Int. J. Heat Mass Transfer Hrycak 26 12 1857 1983 10.1016/S0017-9310(83)80156-2 Heat transfer from round impinging jets to a flat plate
J. Heat Transfer Fabbri 127 7 760 2005 10.1115/1.1924624 Optimized heat transfer for high power electronic cooling using arrays of microjets
Int. J. Heat Mass Transfer Michna 54 9-10 1782 2011 10.1016/j.ijheatmasstransfer.2010.12.038 The effect of area ratio on microjet array heat transfer
Int. J. Heat Mass Transfer Waddell 101 620 2016 10.1016/j.ijheatmasstransfer.2016.04.108 The characterization of a low-profile channel - confined jet for targeted hot-spot cooling in microfluidic applications
Int. J. Heat Mass Transfer Koopman 19 6 673 1976 10.1016/0017-9310(76)90051-X Local and average transfer coefficients due to an impinging row of jets
Int. J. Heat Mass Transfer Goldstein 25 12 1857 1982 10.1016/0017-9310(82)90108-9 Visulization of heat transfer From arrays of impinging jets
Int. J. Heat Mass Transfer Chang 38 5 833 1995 10.1016/0017-9310(94)00202-7 Confined single- and multiple-jet impingement heat transfer-I. Turbulent submerged liquid jets
Biosens. Bioelectron. Shen 20 1 103 2004 10.1016/j.bios.2003.10.014 Thermal chip fabrication with arrays of sensors and heaters for micro-scale impingement cooling heat transfer analysis and measurements
IEEE Trans. Power Electron. Jorg PP 99 2017 Direct single impinging jet cooling of a MOSFET power electronic module
Technology Taylor 1297 2 1994 Guidelines for evaluating and expressing the uncertainty of NIST measurement results
Int. J. Heat Mass Transfer Barboy 55 13-14 3576 2012 10.1016/j.ijheatmasstransfer.2012.02.049 Determination of hot spots on a heated wavy wall in channel flow
I. E. Idelchik, Handbook of hydraulic resistance: coefficients of local resistance and of friction. Jerusalem; Springfield, Va.: Israel Program for Scientific Translations ; Available from the U.S. Dept. of Commerce, Clearinghouse for Federal Scientific and Technical Information, 1966.
IEEE Trans. Electron Devices Kleiner 43 9 1602 1996 10.1109/16.535354 Thermal conductivity measurements of thin silicon dioxide films in integrated circuits
J. Appl. Phys. Yamane 91 12 9772 2002 10.1063/1.1481958 Measurement of thermal conductivity of silicon dioxide thin films using a 3ω method
해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.
*원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.