$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Hydrogel biomaterials and their therapeutic potential for muscle injuries and muscular dystrophies 원문보기

Journal of the Royal Society, Interface, v.15 no.138, 2018년, pp.20170380 - 20170380  

Lev, Rachel ,  Seliktar, Dror

Abstract AI-Helper 아이콘AI-Helper

Muscular diseases such as muscular dystrophies and muscle injuries constitute a large group of ailments that manifest as muscle weakness, atrophy or fibrosis. Although cell therapy is a promising treatment option, the delivery and retention of cells in the muscle is difficult and prevents sustained ...

Keyword

참고문헌 (184)

  1. Tedesco, Francesco Saverio, Dellavalle, Arianna, Diaz-Manera, Jordi, Messina, Graziella, Cossu, Giulio. Repairing skeletal muscle: regenerative potential of skeletal muscle stem cells. The Journal of clinical investigation, vol.120, no.1, 11-19.

  2. Meregalli, Mirella, Farini, Andrea, Sitzia, Clementina, Torrente, Yvan. Advancements in stem cells treatment of skeletal muscle wasting. Frontiers in physiology, vol.5, 48-.

  3. Cezar, C.A., Mooney, D.J.. Biomaterial-based delivery for skeletal muscle repair. Advanced drug delivery reviews, vol.84, 188-197.

  4. Wolf, M.T., Dearth, C.L., Sonnenberg, S.B., Loboa, E.G., Badylak, S.F.. Naturally derived and synthetic scaffolds for skeletal muscle reconstruction. Advanced drug delivery reviews, vol.84, 208-221.

  5. Qazi, T.H., Mooney, D.J., Pumberger, M., Geiszler, S., Duda, G.N.. Biomaterials based strategies for skeletal muscle tissue engineering: Existing technologies and future trends. Biomaterials, vol.53, 502-521.

  6. Kwee, Brian J, Mooney, David J. Biomaterials for skeletal muscle tissue engineering. Current opinion in biotechnology, vol.47, 16-22.

  7. Emery, Alan EH. The muscular dystrophies. The Lancet, vol.359, no.9307, 687-695.

  8. Leung, Doris G., Wagner, Kathryn R.. Therapeutic advances in muscular dystrophy. Annals of neurology, vol.74, no.3, 404-411.

  9. Ann. Transl. Med. Stark AE 287 3 2015 Determinants of the incidence of Duchenne muscular dystrophy 

  10. Mendell, Jerry R., Shilling, Chris, Leslie, Nancy D., Flanigan, Kevin M., al‐Dahhak, Roula, Gastier‐Foster, Julie, Kneile, Kelley, Dunn, Diane M., Duval, Brett, Aoyagi, Alexander, Hamil, Cindy, Mahmoud, Maha, Roush, Kandice, Bird, Lauren, Rankin, Chelsea, Lilly, Heather, Street, Natalie, Chandrasekar, Ram, Weiss, Robert B.. Evidence‐based path to newborn screening for duchenne muscular dystrophy. Annals of neurology, vol.71, no.3, 304-313.

  11. Bennett, Richard R, den Dunnen, Johan, O'Brien, Kristine F, Darras, Basil T, Kunkel, Louis M. Detection of mutations in the dystrophin gene via automated DHPLC screening and direct sequencing. BMC genetics, vol.2, 17-17.

  12. Deenen, Johanna C.W., Arnts, Hisse, van der Maarel, Silvère M., Padberg, George W., Verschuuren, Jan J.G.M., Bakker, Egbert, Weinreich, Stephanie S., Verbeek, André L.M., van Engelen, Baziel G.M.. Population-based incidence and prevalence of facioscapulohumeral dystrophy. Neurology, vol.83, no.12, 1056-1059.

  13. Mercuri, E., Muntoni, F.. Muscular dystrophies. The Lancet, vol.381, no.9869, 845-860.

  14. 10.1007/978-3-319-17362-7_5 

  15. 10.1007/978-3-319-17362-7_4 

  16. Mann, Christopher J, Perdiguero, Eusebio, Kharraz, Yacine, Aguilar, Susana, Pessina, Patrizia, Serrano, Antonio L, Muñoz-Cánoves, Pura. Aberrant repair and fibrosis development in skeletal muscle. Skeletal muscle, vol.1, 21-21.

  17. Gaeta, Michele, Messina, Sonia, Mileto, Achille, Vita, Gian Luca, Ascenti, Giorgio, Vinci, Sergio, Bottari, Antonio, Vita, Giuseppe, Settineri, Nicola, Bruschetta, Daniele, Racchiusa, Sergio, Minutoli, Fabio. Muscle fat-fraction and mapping in Duchenne muscular dystrophy: evaluation of disease distribution and correlation with clinical assessments : Preliminary experience. Skeletal radiology, vol.41, no.8, 955-961.

  18. Blahd W. 2017 Undeorstanding muscular dystrophy - diagnosis and treatment. WebMD [homepage on the Internet] . See http://www.webmd.com/children/understanding-muscular-dystrophy-treatment#1 (accessed 21 May 2017) 

  19. Shadrin, I. Y., Khodabukus, A., Bursac, N.. Striated muscle function, regeneration, and repair. Cellular and molecular life sciences : CMLS, vol.73, no.22, 4175-4202.

  20. Rouger, Karl, Larcher, Thibaut, Dubreil, Laurence, Deschamps, Jack-Yves, Le Guiner, Caroline, Jouvion, Gregory, Delorme, Bruno, Lieubeau, Blandine, Carlus, Marine, Fornasari, Benoît, Theret, Marine, Orlando, Priscilla, Ledevin, Mireille, Zuber, Céline, Leroux, Isabelle, Deleau, Stéphane, Guigand, Lydie, Testault, Isabelle, Le Rumeur, Elisabeth, Fiszman, Marc, Chérel, Yan. Systemic Delivery of Allogenic Muscle Stem Cells Induces Long-Term Muscle Repair and Clinical Efficacy in Duchenne Muscular Dystrophy Dogs. The American journal of pathology, vol.179, no.5, 2501-2518.

  21. Parker, Maura H, Kuhr, Christian, Tapscott, Stephen J, Storb, Rainer. Hematopoietic Cell Transplantation Provides an Immune-tolerant Platform for Myoblast Transplantation in Dystrophic Dogs. Molecular therapy : the journal of the American Society of Gene Therapy, vol.16, no.7, 1340-1346.

  22. Palmieri, Beniamino, Tremblay, Jacques P., Daniele, Lodi. Past, present and future of myoblast transplantation in the treatment of Duchenne muscular dystrophy. Pediatric transplantation, vol.14, no.7, 813-819.

  23. Tedesco, Francesco S., Cossu, Giulio. Stem cell therapies for muscle disorders. Current opinion in neurology, vol.25, no.5, 597-603.

  24. Berardi, Emanuele, Annibali, Daniela, Cassano, Marco, Crippa, Stefania, Sampaolesi, Maurilio. Molecular and cell-based therapies for muscle degenerations: a road under construction. Frontiers in physiology, vol.5, 119-.

  25. Périé, Sophie, Trollet, Capucine, Mouly, Vincent, Vanneaux, Valérie, Mamchaoui, Kamel, Bouazza, Belaïd, Marolleau, Jean Pierre, Laforêt, Pascal, Chapon, Françoise, Eymard, Bruno, Butler-Browne, Gillian, Larghero, Jérome, St Guily, Jean Lacau. Autologous Myoblast Transplantation for Oculopharyngeal Muscular Dystrophy: a Phase I/Iia Clinical Study. Molecular therapy : the journal of the American Society of Gene Therapy, vol.22, no.1, 219-225.

  26. Kannan, R.Y., Salacinski, H.J., Sales, K., Butler, P., Seifalian, A.M.. The roles of tissue engineering and vascularisation in the development of micro-vascular networks: a review. Biomaterials, vol.26, no.14, 1857-1875.

  27. IEEE Eng. Med. Biol. Mag. Bian W 109 27 2008 Tissue engineering of functional skeletal muscle: challenges and recent advances 

  28. McCullen, S.D., Chow, A.G., Stevens, M.M.. In vivo tissue engineering of musculoskeletal tissues. Current opinion in biotechnology, vol.22, no.5, 715-720.

  29. Liu, J., Xu, H.H.K., Zhou, H., Weir, M.D., Chen, Q., Trotman, C.A.. Human umbilical cord stem cell encapsulation in novel macroporous and injectable fibrin for muscle tissue engineering. Acta Biomaterialia: structure-property-function relationships in biomaterials, vol.9, no.1, 4688-4697.

  30. Salimath, Apoorva S., García, Andrés J.. Biofunctional hydrogels for skeletal muscle constructs. Journal of tissue engineering and regenerative medicine, vol.10, no.11, 967-976.

  31. Borselli, Cristina, Cezar, Christine A., Shvartsman, Dymitri, Vandenburgh, Herman H., Mooney, David J.. The role of multifunctional delivery scaffold in the ability of cultured myoblasts to promote muscle regeneration. Biomaterials, vol.32, no.34, 8905-8914.

  32. Page, Raymond L., Malcuit, Christopher, Vilner, Lucy, Vojtic, Ina, Shaw, Sharon, Hedblom, Emmett, Hu, Jason, Pins, George D., Rolle, Marsha W., Dominko, Tanja. Restoration of Skeletal Muscle Defects with Adult Human Cells Delivered on Fibrin Microthreads. Tissue engineering. Part A, vol.17, no.21, 2629-2640.

  33. Rowley, Jon A., Madlambayan, Gerard, Mooney, David J.. Alginate hydrogels as synthetic extracellular matrix materials. Biomaterials, vol.20, no.1, 45-53.

  34. Wolf, M.T., Daly, K.A., Brennan-Pierce, E.P., Johnson, S.A., Carruthers, C.A., D'Amore, A., Nagarkar, S.P., Velankar, S.S., Badylak, S.F.. A hydrogel derived from decellularized dermal extracellular matrix. Biomaterials, vol.33, no.29, 7028-7038.

  35. Gilbert, P. M., Havenstrite, K. L., Magnusson, K. E. G., Sacco, A., Leonardi, N. A., Kraft, P., Nguyen, N. K., Thrun, S., Lutolf, M. P., Blau, H. M.. Substrate Elasticity Regulates Skeletal Muscle Stem Cell Self-Renewal in Culture. Science, vol.329, no.5995, 1078-1081.

  36. Baniasadi, Hossein, Mashayekhan, Shohreh, Fadaoddini, Samira, Haghirsharifzamini, Yasamin. Design, fabrication and characterization of oxidized alginate–gelatin hydrogels for muscle tissue engineering applications. Journal of biomaterials applications, vol.31, no.1, 152-161.

  37. Fitzgerald, Martha M., Bootsma, Katherine, Berberich, Jason A., Sparks, Jessica L.. Tunable Stress Relaxation Behavior of an Alginate-Polyacrylamide Hydrogel: Comparison with Muscle Tissue. Biomacromolecules, vol.16, no.5, 1497-1505.

  38. Engler, Adam J., Sen, Shamik, Sweeney, H. Lee, Discher, Dennis E.. Matrix Elasticity Directs Stem Cell Lineage Specification. Cell, vol.126, no.4, 677-689.

  39. Xu, Y., Li, Z., Li, X., Fan, Z., Liu, Z., Xie, X., Guan, J.. Regulating myogenic differentiation of mesenchymal stem cells using thermosensitive hydrogels. Acta Biomaterialia: structure-property-function relationships in biomaterials, vol.26, 23-33.

  40. Powell, Courtney A., Smiley, Beth L., Mills, John, Vandenburgh, Herman H.. Mechanical stimulation improves tissue-engineered human skeletal muscle. American journal of physiology. Cell physiology, vol.283, no.5, C1557-C1565.

  41. Huang, Yen-Chih, Dennis, Robert G., Larkin, Lisa, Baar, Keith. Rapid formation of functional muscle in vitro using fibrin gels. Journal of applied physiology, vol.98, no.2, 706-713.

  42. Chiron, Stéphane, Tomczak, Carole, Duperray, Alain, Lainé, Jeanne, Bonne, Gisèle, Eder, Alexandra, Hansen, Arne, Eschenhagen, Thomas, Verdier, Claude, Coirault, Catherine. Complex Interactions between Human Myoblasts and the Surrounding 3D Fibrin-Based Matrix. PloS one, vol.7, no.4, e36173-.

  43. Hinds, S., Bian, W., Dennis, R.G., Bursac, N.. The role of extracellular matrix composition in structure and function of bioengineered skeletal muscle. Biomaterials, vol.32, no.14, 3575-3583.

  44. Juhas, M., Bursac, N.. Roles of adherent myogenic cells and dynamic culture in engineered muscle function and maintenance of satellite cells. Biomaterials, vol.35, no.35, 9438-9446.

  45. Bian, W., Bursac, N.. Engineered skeletal muscle tissue networks with controllable architecture. Biomaterials, vol.30, no.7, 1401-1412.

  46. Neal, Devin, Sakar, Mahmut Selman, Ong, Lee-Ling S., Harry Asada, H.. Formation of elongated fascicle-inspired 3D tissues consisting of high-density, aligned cells using sacrificial outer molding. Lab on a chip, vol.14, no.11, 1907-1916.

  47. Neal, Devin, Sakar, Mahmut Selman, Bashir, Rashid, Chan, Vincent, Asada, Haruhiko Harry. Mechanical Characterization and Shape Optimization of Fascicle-Like 3D Skeletal Muscle Tissues Contracted with Electrical and Optical Stimuli. Tissue engineering. Part A, vol.21, no.11, 1848-1858.

  48. Sakar, Mahmut Selman, Neal, Devin, Boudou, Thomas, Borochin, Michael A., Li, Yinqing, Weiss, Ron, Kamm, Roger D., Chen, Christopher S., Asada, H. Harry. Formation and optogenetic control of engineered 3D skeletal muscle bioactuators. Lab on a chip, vol.12, no.23, 4976-.

  49. Heher, P., Maleiner, B., Pruller, J., Teuschl, A.H., Kollmitzer, J., Monforte, X., Wolbank, S., Redl, H., Runzler, D., Fuchs, C.. A novel bioreactor for the generation of highly aligned 3D skeletal muscle-like constructs through orientation of fibrin via application of static strain. Acta Biomaterialia: structure-property-function relationships in biomaterials, vol.24, 251-265.

  50. Wang, Ling, Wu, Yaobin, Guo, Baolin, Ma, Peter X.. Nanofiber Yarn/Hydrogel Core–Shell Scaffolds Mimicking Native Skeletal Muscle Tissue for Guiding 3D Myoblast Alignment, Elongation, and Differentiation. ACS nano, vol.9, no.9, 9167-9179.

  51. Kang, Hyun-Wook, Lee, Sang Jin, Ko, In Kap, Kengla, Carlos, Yoo, James J, Atala, Anthony. A 3D bioprinting system to produce human-scale tissue constructs with structural integrity. Nature biotechnology, vol.34, no.3, 312-319.

  52. Mawad, Damia, Stewart, Elise, Officer, David L., Romeo, Tony, Wagner, Pawel, Wagner, Klaudia, Wallace, Gordon G.. A Single Component Conducting Polymer Hydrogel as a Scaffold for Tissue Engineering. Advanced functional materials, vol.22, no.13, 2692-2699.

  53. Ramón‐Azcón, Javier, Ahadian, Samad, Estili, Mehdi, Liang, Xiaobin, Ostrovidov, Serge, Kaji, Hirokazu, Shiku, Hitoshi, Ramalingam, Murugan, Nakajima, Ken, Sakka, Yoshio, Khademhosseini, Ali, Matsue, Tomokazu. Dielectrophoretically Aligned Carbon Nanotubes to Control Electrical and Mechanical Properties of Hydrogels to Fabricate Contractile Muscle Myofibers. Advanced materials, vol.25, no.29, 4028-4034.

  54. Ahadian, Samad, Ramón-Azcón, Javier, Estili, Mehdi, Liang, Xiaobin, Ostrovidov, Serge, Shiku, Hitoshi, Ramalingam, Murugan, Nakajima, Ken, Sakka, Yoshio, Bae, Hojae, Matsue, Tomokazu, Khademhosseini, Ali. Hybrid hydrogels containing vertically aligned carbon nanotubes with anisotropic electrical conductivity for muscle myofiber fabrication. Scientific reports, vol.4, 4271-.

  55. Ahadian, Samad, Banan Sadeghian, Ramin, Yaginuma, Shin, Ramón-Azcón, Javier, Nashimoto, Yuji, Liang, Xiaobin, Bae, Hojae, Nakajima, Ken, Shiku, Hitoshi, Matsue, Tomokazu, Nakayama, Koji S., Khademhosseini, Ali. Hydrogels containing metallic glass sub-micron wires for regulating skeletal muscle cell behaviour. Biomaterials science, vol.3, no.11, 1449-1458.

  56. Zatti, Susi, Zoso, Alice, Serena, Elena, Luni, Camilla, Cimetta, Elisa, Elvassore, Nicola. Micropatterning Topologyon Soft Substrates AffectsMyoblast Proliferation and Differentiation. Langmuir : the ACS journal of surfaces and colloids, vol.28, no.5, 2718-2726.

  57. Villa, Chiara, Martello, Federico, Erratico, Silvia, Tocchio, Alessandro, Belicchi, Marzia, Lenardi, Cristina, Torrente, Yvan. P(NIPAAM-co-HEMA) thermoresponsive hydrogels: an alternative approach for muscle cell sheet engineering : Thermoresponsive materials for muscle. Journal of tissue engineering and regenerative medicine, vol.11, no.1, 187-196.

  58. Vandenburgh, Herman, Shansky, Janet, Benesch-Lee, Frank, Barbata, Victoria, Reid, Jonathan, Thorrez, Lieven, Valentini, Robert, Crawford, Gregory. Drug-screening platform based on the contractility of tissue-engineered muscle. Muscle & nerve, vol.37, no.4, 438-447.

  59. Vandenburgh, Herman, Shansky, Janet, Benesch-Lee, Frank, Skelly, Kirsten, Spinazzola, Janelle M., Saponjian, Yero, Tseng, Brian S.. Automated drug screening with contractile muscle tissue engineered from dystrophic myoblasts. The FASEB journal : official publication of the Federation of American Societies for Experimental Biology, vol.23, no.10, 3325-3334.

  60. Serena, Elena, Zatti, Susi, Reghelin, Elena, Pasut, Alessandra, Cimetta, Elisa, Elvassore, Nicola. Soft substrates drive optimal differentiation of human healthy and dystrophic myotubes. Integrative biology : quantitative biosciences from nano to macro, vol.2, no.4, 193-201.

  61. Madden, Lauran, Juhas, Mark, Kraus, William E, Truskey, George A, Bursac, Nenad. Bioengineered human myobundles mimic clinical responses of skeletal muscle to drugs. eLife, vol.4, e04885-.

  62. Juhas, Mark, Engelmayr Jr., George C., Fontanella, Andrew N., Palmer, Gregory M., Bursac, Nenad. Biomimetic engineered muscle with capacity for vascular integration and functional maturation in vivo. Proceedings of the National Academy of Sciences of the United States of America, vol.111, no.15, 5508-5513.

  63. 10.22203/eCM.v023a31 

  64. Rossi, Carlo Alberto, Flaibani, Marina, Blaauw, Bert, Pozzobon, Michela, Figallo, Elisa, Reggiani, Carlo, Vitiello, Libero, Elvassore, Nicola, De Coppi, Paolo. In vivo tissue engineering of functional skeletal muscle by freshly isolated satellite cells embedded in a photopolymerizable hydrogel. The FASEB journal : official publication of the Federation of American Societies for Experimental Biology, vol.25, no.7, 2296-2304.

  65. Fuoco, Claudia, Salvatori, Maria Lavinia, Biondo, Antonella, Shapira-Schweitzer, Keren, Santoleri, Sabrina, Antonini, Stefania, Bernardini, Sergio, Tedesco, Francesco Saverio, Cannata, Stefano, Seliktar, Dror, Cossu, Giulio, Gargioli, Cesare. Injectable polyethylene glycol-fibrinogen hydrogel adjuvant improves survival and differentiation of transplanted mesoangioblasts in acute and chronic skeletal-muscle degeneration. Skeletal muscle, vol.2, no.1, 24-24.

  66. Cosgrove, Benjamin D., Gilbert, Penney M., Porpiglia, Ermelinda, Mourkioti, Foteini, Lee, Steven P., Corbel, Stephane Y., Llewellyn, Michael E., Delp, Scott L., Blau, Helen M.. Rejuvenation of the aged muscle stem cell population restores strength to injured aged muscles. Nature medicine, vol.20, no.3, 255-264.

  67. Fuoco, Claudia, Sangalli, Elena, Vono, Rosa, Testa, Stefano, Sacchetti, Benedetto, Latronico, Michael V. G., Bernardini, Sergio, Madeddu, Paolo, Cesareni, Gianni, Seliktar, Dror, Rizzi, Roberto, Bearzi, Claudia, Cannata, Stefano M., Spinetti, Gaia, Gargioli, Cesare. 3D hydrogel environment rejuvenates aged pericytes for skeletal muscle tissue engineering. Frontiers in physiology, vol.5, 203-.

  68. Fuoco, Claudia, Rizzi, Roberto, Biondo, Antonella, Longa, Emanuela, Mascaro, Anna, Shapira-Schweitzer, Keren, Kossovar, Olga, Benedetti, Sara, Salvatori, Maria L, Santoleri, Sabrina, Testa, Stefano, Bernardini, Sergio, Bottinelli, Roberto, Bearzi, Claudia, Cannata, Stefano M, Seliktar, Dror, Cossu, Giulio, Gargioli, Cesare. In vivo generation of a mature and functional artificial skeletal muscle. EMBO molecular medicine, vol.7, no.4, 411-422.

  69. Beier, Justus P., Stern-Straeter, Jens, Foerster, Vanni T., Kneser, Ulrich, Stark, G Bjoern, Bach, Alexander D.. Tissue Engineering of Injectable Muscle: Three-Dimensional Myoblast-Fibrin Injection in the Syngeneic Rat Animal Model. Plastic and reconstructive surgery, vol.118, no.5, 1113-1121.

  70. Borschel, Gregory H., Dow, Douglas E., Dennis, Robert G., Brown, David L.. Tissue-Engineered Axially Vascularized Contractile Skeletal Muscle. Plastic and reconstructive surgery, vol.117, no.7, 2235-2242.

  71. Hammers, David W., Sarathy, Apurva, Pham, Chantal B., Drinnan, Charles T., Farrar, Roger P., Suggs, Laura J.. Controlled release of IGF‐I from a biodegradable matrix improves functional recovery of skeletal muscle from ischemia/reperfusion. Biotechnology and bioengineering, vol.109, no.4, 1051-1059.

  72. Rybalko, Viktoriya Y., Pham, Chantal B., Hsieh, Pei-Ling, Hammers, David W., Merscham-Banda, Melissa, Suggs, Laura J., Farrar, Roger P.. Controlled delivery of SDF-1α and IGF-1: CXCR4+ cell recruitment and functional skeletal muscle recovery. Biomaterials science, vol.3, no.11, 1475-1486.

  73. Borselli, Cristina, Storrie, Hannah, Benesch-Lee, Frank, Shvartsman, Dmitry, Cezar, Christine, Lichtman, Jeff W., Vandenburgh, Herman H., Mooney, David J.. Functional muscle regeneration with combined delivery of angiogenesis and myogenesis factors. Proceedings of the National Academy of Sciences of the United States of America, vol.107, no.8, 3287-3292.

  74. Ansari, Sahar, Chen, Chider, Xu, Xingtian, Annabi, Nasim, Zadeh, Homayoun H., Wu, Benjamin M., Khademhosseini, Ali, Shi, Songtao, Moshaverinia, Alireza. Muscle Tissue Engineering Using Gingival Mesenchymal Stem Cells Encapsulated in Alginate Hydrogels Containing Multiple Growth Factors. Annals of biomedical engineering, vol.44, no.6, 1908-1920.

  75. Liu, G., Pareta, R.A., Wu, R., Shi, Y., Zhou, X., Liu, H., Deng, C., Sun, X., Atala, A., Opara, E.C., Zhang, Y.. Skeletal myogenic differentiation of urine-derived stem cells and angiogenesis using microbeads loaded with growth factors. Biomaterials, vol.34, no.4, 1311-1326.

  76. Ding, Ke, Yang, Zhong, Zhang, Yu‐Long, Xu, Jian‐Zhong. Injectable thermosensitive chitosan/β‐glycerophosphate/collagen hydrogel maintains the plasticity of skeletal muscle satellite cells and supports their in vivo viability. Cell biology international, vol.37, no.9, 977-987.

  77. Hwang, J.H., Kim, I.G., Piao, S., Jung, A.R., Lee, J.Y., Park, K.D., Lee, J.Y.. Combination therapy of human adipose-derived stem cells and basic fibroblast growth factor hydrogel in muscle regeneration. Biomaterials, vol.34, no.25, 6037-6045.

  78. Wang, Lin, Shansky, Janet, Borselli, Cristina, Mooney, David, Vandenburgh, Herman. Design and Fabrication of a Biodegradable, Covalently Crosslinked Shape-Memory Alginate Scaffold for Cell and Growth Factor Delivery. Tissue engineering. Part A, vol.18, no.19, 2000-2007.

  79. Wang, Lin, Cao, Lan, Shansky, Janet, Wang, Zheng, Mooney, David, Vandenburgh, Herman. Minimally Invasive Approach to the Repair of Injured Skeletal Muscle With a Shape-memory Scaffold. Molecular therapy : the journal of the American Society of Gene Therapy, vol.22, no.8, 1441-1449.

  80. Peppas, N. A., Hilt, J. Z., Khademhosseini, A., Langer, R.. Hydrogels in Biology and Medicine: From Molecular Principles to Bionanotechnology. Advanced materials, vol.18, no.11, 1345-1360.

  81. Jeong, B., Kim, S.W., Bae, Y.H.. Thermosensitive sol-gel reversible hydrogels. Advanced drug delivery reviews, vol.64, no.suppl, 154-162.

  82. Vilquin, Jean-Thomas, Catelain, Cyril, Vauchez, Karine. Cell therapy for muscular dystrophies: advances and challenges. Current opinion in organ transplantation, vol.16, no.6, 640-649.

  83. Relaix, Frederic, Zammit, Peter S.. Satellite cells are essential for skeletal muscle regeneration: the cell on the edge returns centre stage. Development, vol.139, no.16, 2845-2856.

  84. Brack, Andrew S., Rando, Thomas A.. Tissue-Specific Stem Cells: Lessons from the Skeletal Muscle Satellite Cell. Cell stem cell, vol.10, no.5, 504-514.

  85. Gnecchi, Massimiliano, Zhang, Zhiping, Ni, Aiguo, Dzau, Victor J.. Paracrine Mechanisms in Adult Stem Cell Signaling and Therapy. Circulation research : a journal of the American Heart Association, vol.103, no.11, 1204-1219.

  86. Sassoli, Chiara, Zecchi-Orlandini, Sandra, Formigli, Lucia. Trophic Actions of Bone Marrow-Derived Mesenchymal Stromal Cells for Muscle Repair/Regeneration. Cells, vol.1, no.4, 832-850.

  87. CHARGÉ, SOPHIE B. P., RUDNICKI, MICHAEL A.. Cellular and Molecular Regulation of Muscle Regeneration. Physiological reviews, vol.84, no.1, 209-238.

  88. Mauro, Alexander. SATELLITE CELL OF SKELETAL MUSCLE FIBERS. Journal of biophysical and biochemical cytology, vol.9, no.2, 493-495.

  89. Montarras, Didier, Morgan, Jennifer, Collins, Charlotte, Relaix, Frédéric, Zaffran, Stéphane, Cumano, Ana, Partridge, Terence, Buckingham, Margaret. Direct Isolation of Satellite Cells for Skeletal Muscle Regeneration. Science, vol.309, no.5743, 2064-2067.

  90. Cerletti, Massimiliano, Jurga, Sara, Witczak, Carol A., Hirshman, Michael F., Shadrach, Jennifer L., Goodyear, Laurie J., Wagers, Amy J.. Highly Efficient, Functional Engraftment of Skeletal Muscle Stem Cells in Dystrophic Muscles. Cell, vol.134, no.1, 37-47.

  91. Dellavalle, Arianna, Sampaolesi, Maurilio, Tonlorenzi1, Rossana, Tagliafico, Enrico, Sacchetti, Benedetto, Perani, Laura, Innocenzi, Anna, Galvez, Beatriz G., Messina, Graziella, Morosetti, Roberta, Li, Sheng, Belicchi, Marzia, Peretti, Giuseppe, Chamberlain, Jeffrey S., Wright, Woodring E., Torrente, Yvan, Ferrari, Stefano, Bianco, Paolo, Cossu, Giulio. Pericytes of human skeletal muscle are myogenic precursors distinct from satellite cells. Nature cell biology, vol.9, no.3, 255-267.

  92. Sampaolesi, Maurilio, Torrente, Yvan, Innocenzi, Anna, Tonlorenzi, Rossana, D’Antona, Giuseppe, Pellegrino, M. Antonietta, Barresi, Rita, Bresolin, Nereo, De Angelis, M. Gabriella Cusella, Campbell, Kevin P., Bottinelli, Roberto, Cossu, Giulio. Cell Therapy of &agr;-Sarcoglycan Null Dystrophic Mice Through Intra- Arterial Delivery of Mesoangioblasts. Science, vol.301, no.5632, 487-492.

  93. Guttinger, Maria, Tafi, Elisiana, Battaglia, Manuela, Coletta, Marcello, Cossu, Giulio. Allogeneic mesoangioblasts give rise to alpha-sarcoglycan expressing fibers when transplanted into dystrophic mice. Experimental cell research, vol.312, no.19, 3872-3879.

  94. Gang, E.J., Darabi, R., Bosnakovski, D., Xu, Z., Kamm, K.E., Kyba, M., Perlingeiro, R.C.R.. Engraftment of mesenchymal stem cells into dystrophin-deficient mice is not accompanied by functional recovery. Experimental cell research, vol.315, no.15, 2624-2636.

  95. Dellavalle, A., Maroli, G., Covarello, D., Azzoni, E., Innocenzi, A., Perani, L., Antonini, S., Sambasivan, R., Brunelli, S., Tajbakhsh, S., Cossu, G.. Pericytes resident in postnatal skeletal muscle differentiate into muscle fibres and generate satellite cells. Nature communications, vol.2, 499-.

  96. Tedesco, Francesco Saverio, Hoshiya, Hidetoshi, D’Antona, Giuseppe, Gerli, Mattia F. M., Messina, Graziella, Antonini, Stefania, Tonlorenzi, Rossana, Benedetti, Sara, Berghella, Libera, Torrente, Yvan, Kazuki, Yasuhiro, Bottinelli, Roberto, Oshimura, Mitsuo, Cossu, Giulio. Stem Cell-Mediated Transfer of a Human Artificial Chromosome Ameliorates Muscular Dystrophy. Science translational medicine, vol.3, no.96,

  97. Sampaolesi, Maurilio, Blot, Stephane, D’Antona, Giuseppe, Granger, Nicolas, Tonlorenzi, Rossana, Innocenzi, Anna, Mognol, Paolo, Thibaud, Jean-Lauren, Galvez, Beatriz G., Barthélémy, Ines, Perani, Laura, Mantero, Sara, Guttinger, Maria, Pansarasa, Orietta, Rinaldi, Chiara, Cusella De Angelis, M. Gabriella, Torrente, Yvan, Bordignon, Claudio, Bottinelli, Roberto, Cossu, Giulio. Mesoangioblast stem cells ameliorate muscle function in dystrophic dogs. Nature, vol.444, no.7119, 574-579.

  98. Tajbakhsh, S.. Skeletal muscle stem cells in developmental versus regenerative myogenesis. Journal of internal medicine, vol.266, no.4, 372-389.

  99. Darabi, Radbod, Pan, Weihong, Bosnakovski, Darko, Baik, June, Kyba, Michael, Perlingeiro, Rita C. R.. Functional Myogenic Engraftment from Mouse iPS Cells. Stem cell reviews and reports, vol.7, no.4, 948-957.

  100. Darabi, R., Arpke, Robert W., Irion, S., Dimos, John T., Grskovic, M., Kyba, M., Perlingeiro, Rita C.R.. Human ES- and iPS-Derived Myogenic Progenitors Restore DYSTROPHIN and Improve Contractility upon Transplantation in Dystrophic Mice. Cell stem cell, vol.10, no.5, 610-619.

  101. Kim, J., Oliveira, V.K.P., Yamamoto, A., Perlingeiro, R.C.R.. Generation of skeletal myogenic progenitors from human pluripotent stem cells using non-viral delivery of minicircle DNA. Stem cell research, vol.23, 87-94.

  102. Sacco, Alessandra, Doyonnas, Regis, Kraft, Peggy, Vitorovic, Stefan, Blau, Helen M.. Self-renewal and expansion of single transplanted muscle stem cells. Nature, vol.456, no.7221, 502-506.

  103. Cosgrove, Benjamin D., Sacco, Alessandra, Gilbert, Penney M., Blau, Helen M.. A home away from home: Challenges and opportunities in engineering in vitro muscle satellite cell niches. Differentiation, vol.78, no.2, 185-194.

  104. McCullagh, K.J.A., Perlingeiro, R.C.R.. Coaxing stem cells for skeletal muscle repair. Advanced drug delivery reviews, vol.84, 198-207.

  105. Annabi, Nasim, Tamayol, Ali, Uquillas, Jorge Alfredo, Akbari, Mohsen, Bertassoni, Luiz E., Cha, Chaenyung, Camci‐Unal, Gulden, Dokmeci, Mehmet R., Peppas, Nicholas A., Khademhosseini, Ali. 25th Anniversary Article: Rational Design and Applications of Hydrogels in Regenerative Medicine. Advanced materials, vol.26, no.1, 85-124.

  106. Seliktar, Dror. Designing Cell-Compatible Hydrogels for Biomedical Applications. Science, vol.336, no.6085, 1124-1128.

  107. Gombotz, W.R., Wee, S.F.. Protein release from alginate matrices. Advanced drug delivery reviews, vol.64, no.suppl, 194-205.

  108. DeForest, Cole A., Anseth, Kristi S.. Advances in Bioactive Hydrogels to Probe and Direct Cell Fate. Annual review of chemical and biomolecular engineering, vol.3, 421-444.

  109. Blood Sahni A 3772 96 2000 10.1182/blood.V96.12.3772 Vascular endothelial growth factor binds to fibrinogen and fibrin and stimulates endothelial cell proliferation 

  110. Sahni, A., Altland, O. D., Francis, C. W.. FGF‐2 but not FGF‐1 binds fibrin and supports prolonged endothelial cell growth. Journal of thrombosis and haemostasis : JTH, vol.1, no.6, 1304-1310.

  111. Sahni, Abha, Odrljin, Tatjana, Francis, Charles W.. Binding of Basic Fibroblast Growth Factor to Fibrinogen and Fibrin. The Journal of biological chemistry, vol.273, no.13, 7554-7559.

  112. Campbell, Phil G., Durham, Susan K., Hayes, James D., Suwanichkul, Adisak, Powell, David R.. Insulin-like Growth Factor-binding Protein-3 Binds Fibrinogen and Fibrin. The Journal of biological chemistry, vol.274, no.42, 30215-30221.

  113. Brown, A.C., Barker, T.H.. Fibrin-based biomaterials: Modulation of macroscopic properties through rational design at the molecular level. Acta Biomaterialia: structure-property-function relationships in biomaterials, vol.10, no.4, 1502-1514.

  114. Knop, Katrin, Hoogenboom, Richard, Fischer, Dagmar, Schubert, Ulrich S.. Poly(ethylene glycol) in Drug Delivery: Pros and Cons as Well as Potential Alternatives. Angewandte Chemie. international edition, vol.49, no.36, 6288-6308.

  115. Gentile, Piergiorgio, Chiono, Valeria, Carmagnola, Irene, Hatton, Paul V.. An Overview of Poly(lactic- co -glycolic) Acid (PLGA)-Based Biomaterials for Bone Tissue Engineering. International journal of molecular sciences, vol.15, no.3, 3640-3659.

  116. Gaharwar, Akhilesh K., Peppas, Nicholas A., Khademhosseini, Ali. Nanocomposite hydrogels for biomedical applications. Biotechnology and bioengineering, vol.111, no.3, 441-453.

  117. Carrow, James K., Gaharwar, Akhilesh K.. Bioinspired Polymeric Nanocomposites for Regenerative Medicine. Macromolecular chemistry and physics, vol.216, no.3, 248-264.

  118. Almany, L., Seliktar, D.. Biosynthetic hydrogel scaffolds made from fibrinogen and polyethylene glycol for 3D cell cultures. Biomaterials, vol.26, no.15, 2467-2477.

  119. Sarker, Bapi, Papageorgiou, Dimitrios G., Silva, Raquel, Zehnder, Tobias, Gul-E-Noor, Farhana, Bertmer, Marko, Kaschta, Joachim, Chrissafis, Konstantinos, Detsch, Rainer, Boccaccini, Aldo R.. Fabrication of alginate-gelatin crosslinked hydrogel microcapsules and evaluation of the microstructure and physico-chemical properties. Journal of materials chemistry. B, Materials for biology and medicine, vol.2, no.11, 1470-.

  120. Balakrishnan, B., Joshi, N., Jayakrishnan, A., Banerjee, R.. Self-crosslinked oxidized alginate/gelatin hydrogel as injectable, adhesive biomimetic scaffolds for cartilage regeneration. Acta Biomaterialia: structure-property-function relationships in biomaterials, vol.10, no.8, 3650-3663.

  121. Cai, K., Zhang, J., Deng, L., Yang, L., Hu, Y., Chen, C., Xue, L., Wang, L.. Physical and Biological Properties of a Novel Hydrogel Composite Based on Oxidized Alginate, Gelatin and Tricalcium Phosphate for Bone Tissue Engineering. Advanced engineering materials, vol.9, no.12, 1082-1088.

  122. Fisher, Omar Z., Khademhosseini, Ali, Langer, Robert, Peppas, Nicholas A.. Bioinspired Materials for Controlling Stem Cell Fate. Accounts of chemical research, vol.43, no.3, 419-428.

  123. Lu, Yongxin, Shansky, Janet, Del Tatto, Michael, Ferland, Paulette, Wang, Xiaoyun, Vandenburgh, Herman. Recombinant Vascular Endothelial Growth Factor Secreted From Tissue-Engineered Bioartificial Muscles Promotes Localized Angiogenesis. Circulation, vol.104, no.5, 594-599.

  124. Powell, Courtney, Shansky, Janet, Tatto, Michael Del, Forman, Daniel E., Hennessey, James, Sullivan, Kathryn, Zielinski, Beth A., Vandenburgh, Herman H.. Tissue-Engineered Human Bioartificial Muscles Expressing a Foreign Recombinant Protein for Gene Therapy. Human gene therapy, vol.10, no.4, 565-577.

  125. Khodabukus, Alastair, Baar, Keith. Regulating Fibrinolysis to Engineer Skeletal Muscle from the C2C12 Cell Line. Tissue engineering. Part C, Methods, vol.15, no.3, 501-511.

  126. Biotechnol. Bioeng. Nagamine K 1161 105 2010 10.1002/bit.22636 Micropatterning contractile C2C12 myotubes embedded in a fibrin gel 

  127. Hume, S.L., Hoyt, S.M., Walker, J.S., Sridhar, B.V., Ashley, J.F., Bowman, C.N., Bryant, S.J.. Alignment of multi-layered muscle cells within three-dimensional hydrogel macrochannels. Acta Biomaterialia: structure-property-function relationships in biomaterials, vol.8, no.6, 2193-2202.

  128. Bajaj, Piyush, Reddy, Bobby, Millet, Larry, Wei, Chunan, Zorlutuna, Pinar, Bao, Gang, Bashir, Rashid. Patterning the differentiation of C2C12 skeletal myoblasts. Integrative biology : quantitative biosciences from nano to macro, vol.3, no.9, 897-909.

  129. Langelaan, Marloes L. P., Boonen, Kristel J. M., Rosaria-Chak, Kang Yuen, van der Schaft, Daisy W. J., Post, Mark J., Baaijens, Frank P. T.. Advanced maturation by electrical stimulation: Differences in response between C2C12 and primary muscle progenitor cells. Journal of tissue engineering and regenerative medicine, vol.5, no.7, 529-539.

  130. Donnelly, Kenneth, Khodabukus, Alastair, Philp, Andrew, Deldicque, Louise, Dennis, Robert G., Baar, Keith. A Novel Bioreactor for Stimulating Skeletal MuscleIn Vitro. Tissue engineering. Part C, Methods, vol.16, no.4, 711-718.

  131. Atherton, P. J., Szewczyk, N. J., Selby, A., Rankin, D., Hillier, K., Smith, K., Rennie, M. J., Loughna, P. T.. Cyclic stretch reduces myofibrillar protein synthesis despite increases in FAK and anabolic signalling in L6 cells. The Journal of physiology, vol.587, no.14, 3719-3727.

  132. J. Appl. Biomater. Biomech. Candiani G 68 8 2010 Cyclic mechanical stimulation favors myosin heavy chain accumulation in engineered skeletal muscle constructs 

  133. Vandenburgh, Herman H., Karlisch, Patricia. Longitudinal growth of skeletal myotubes in vitro in a new horizontal mechanical cell stimulator. In vitro cellular & developmental biology : journal of the Tissue Culture Association, vol.25, no.7, 607-616.

  134. Matsumoto, Takuya, Sasaki, Jun-Ichi, Alsberg, Eben, Egusa, Hiroshi, Yatani, Hirofumi, Sohmura, Taiji. Three-Dimensional Cell and Tissue Patterning in a Strained Fibrin Gel System. PloS one, vol.2, no.11, e1211-.

  135. van der Schaft, Daisy W.J., van Spreeuwel, Ariane C.C., van Assen, Hans C., Baaijens, Frank P.T.. Mechanoregulation of Vascularization in Aligned Tissue-Engineered Muscle: A Role for Vascular Endothelial Growth Factor. Tissue engineering. Part A, vol.17, no.21, 2857-2865.

  136. Boonen, K.J.M., Langelaan, M.L.P., Polak, R.B., van der Schaft, D.W.J., Baaijens, F.P.T., Post, M.J.. Effects of a combined mechanical stimulation protocol: Value for skeletal muscle tissue engineering. Journal of biomechanics, vol.43, no.8, 1514-1521.

  137. J. Med. Econ. Druyts E 659 33 1997 A simplified method for tissue engineering skeletal muscle organoids in vitro 

  138. 10.1290/1071-2690(2000)036<0327:EAICPO>2.0.CO;2 

  139. Collet, Jean-Philippe, Shuman, Henry, Ledger, Robert E., Lee, Seungtaek, Weisel, John W.. The elasticity of an individual fibrin fiber in a clot. Proceedings of the National Academy of Sciences of the United States of America, vol.102, no.26, 9133-9137.

  140. Close, R I. Dynamic properties of mammalian skeletal muscles.. Physiological reviews, vol.52, no.1, 129-197.

  141. Bian, Weining, Liau, Brian, Badie, Nima, Bursac, Nenad. Mesoscopic hydrogel molding to control the 3D geometry of bioartificial muscle tissues. Nature protocols, vol.4, no.10, 1522-1534.

  142. 10.22203/eCM.v019a19 

  143. Koning, Merel, Harmsen, Martin C., van Luyn, Marja J. A., Werker, Paul M. N.. Current opportunities and challenges in skeletal muscle tissue engineering. Journal of tissue engineering and regenerative medicine, vol.3, no.6, 407-415.

  144. Green, Rylie A., Hassarati, Rachelle T., Goding, Josef A., Baek, Sungchul, Lovell, Nigel H., Martens, Penny J., Poole‐Warren, Laura A.. Conductive Hydrogels: Mechanically Robust Hybrids for Use as Biomaterials. Macromolecular bioscience, vol.12, no.4, 494-501.

  145. Ostrovidov, S., Shi, X., Zhang, L., Liang, X., Kim, S.B., Fujie, T., Ramalingam, M., Chen, M., Nakajima, K., Al-Hazmi, F., Bae, H., Memic, A., Khademhosseini, A.. Myotube formation on gelatin nanofibers - Multi-walled carbon nanotubes hybrid scaffolds. Biomaterials, vol.35, no.24, 6268-6277.

  146. Shin, Su Ryon, Bae, Hojae, Cha, Jae Min, Mun, Ji Young, Chen, Ying-Chieh, Tekin, Halil, Shin, Hyeongho, Zarabi, Sidney, Dokmeci, Mehmet R., Tang, Shirley, Khademhosseini, Ali. Carbon Nanotube Reinforced Hybrid Microgels as Scaffold Materials for Cell Encapsulation. ACS nano, vol.6, no.1, 362-372.

  147. Griffin, M.A., Engler, A.J., Barber, T.A., Healy, K.E., Sweeney, H.L., Discher, D.E.. Patterning, Prestress, and Peeling Dynamics of Myocytes. Biophysical journal, vol.86, no.2, 1209-1222.

  148. Lim, Jangsoo, Jun, Indong, Lee, Yu Bin, Kim, Eun Mi, Shin, Dongsuk, Jeon, Hojeong, Park, Hansoo, Shin, Heungsoo. Fabrication of cell sheets with anisotropically aligned myotubes using thermally expandable micropatterned hydrogels. Macromolecular research, vol.24, no.6, 562-572.

  149. Matsumura, Kiichiro, Campbell, Kevin P.. Dystrophin-glycoprotein complex: Its role in the molecular pathogenesis of muscular dystrophies. Muscle & nerve, vol.17, no.1, 2-15.

  150. Morgan, J.E., Beauchamp, J.R., Pagel, C.N., Peckham, M., Ataliotis, P., Jat, P.S., Noble, M.D., Farmer, K., Partridge, T.A.. Myogenic Cell Lines Derived from Transgenic Mice Carrying a Thermolabile T Antigen: A Model System for the Derivation of Tissue-Specific and Mutation-Specific Cell Lines. Developmental biology, vol.162, no.2, 486-498.

  151. Zhu, Chun-Hong, Mouly, Vincent, Cooper, Racquel N., Mamchaoui, Kamel, Bigot, Anne, Shay, Jerry W., Di Santo, James P., Butler-Browne, Gillian S., Wright, Woodring E.. Cellular senescence in human myoblasts is overcome by human telomerase reverse transcriptase and cyclin-dependent kinase 4: consequences in aging muscle and therapeutic strategies for muscular dystrophies. Aging cell, vol.6, no.4, 515-523.

  152. Moon, Du Geon, Christ, George, Stitzel, Joel D., Atala, Anthony, Yoo, James J.. Cyclic Mechanical Preconditioning Improves Engineered Muscle Contraction. Tissue engineering. Part A, vol.14, no.4, 473-482.

  153. Mudera, V., Smith, A.S.T., Brady, M.A., Lewis, M.P.. The effect of cell density on the maturation and contractile ability of muscle derived cells in a 3D tissue‐engineered skeletal muscle model and determination of the cellular and mechanical stimuli required for the synthesis of a postural phenotype. Journal of cellular physiology, vol.225, no.3, 646-653.

  154. Racca, Alice W., Beck, Anita E., Rao, Vijay S., Flint, Galina V., Lundy, Scott D., Born, Donald E., Bamshad, Michael J., Regnier, Michael. Contractility and kinetics of human fetal and human adult skeletal muscle. The Journal of physiology, vol.591, no.12, 3049-3061.

  155. Cheng, Cindy S, Davis, Brittany NJ, Madden, Lauran, Bursac, Nenad, Truskey, George A. Physiology and metabolism of tissue-engineered skeletal muscle. Experimental biology and medicine, vol.239, no.9, 1203-1214.

  156. Liao, Hua, Zhou, Guang-Qian. Development and Progress of Engineering of Skeletal Muscle Tissue. Tissue engineering. Part B, Reviews, vol.15, no.3, 319-331.

  157. Londono, Ricardo, Badylak, Stephen F.. Biologic Scaffolds for Regenerative Medicine: Mechanisms of In vivo Remodeling. Annals of biomedical engineering, vol.43, no.3, 577-592.

  158. Gargioli, Cesare, Coletta, Marcello, De Grandis, Fabrizio, Cannata, Stefano M, Cossu, Giulio. PlGF–MMP-9–expressing cells restore microcirculation and efficacy of cell therapy in aged dystrophic muscle. Nature medicine, vol.14, no.9, 973-978.

  159. Cossu, Giulio, Previtali, Stefano C, Napolitano, Sara, Cicalese, Maria Pia, Tedesco, Francesco Saverio, Nicastro, Francesca, Noviello, Maddalena, Roostalu, Urmas, Natali Sora, Maria Grazia, Scarlato, Marina, De Pellegrin, Maurizio, Godi, Claudia, Giuliani, Serena, Ciotti, Francesca, Tonlorenzi, Rossana, Lorenzetti, Isabella, Rivellini, Cristina, Benedetti, Sara, Gatti, Roberto, Marktel, Sarah, Mazzi, Benedetta, Tettamanti, Andrea, Ragazzi, Martina, Imro, Maria Adele, Marano, Giuseppina, Ambrosi, Alessandro, Fiori, Rossana, Sormani, Maria Pia, Bonini, Chiara, Venturini, Massimo, Politi, Letterio S, Torrente, Yvan, Ciceri, Fabio. Intra‐arterial transplantation of HLA ‐matched donor mesoangioblasts in Duchenne muscular dystrophy. EMBO molecular medicine, vol.7, no.12, 1513-1528.

  160. Cheng, A.Y., Garcia, A.J.. Engineering the matrix microenvironment for cell delivery and engraftment for tissue repair. Current opinion in biotechnology, vol.24, no.5, 864-871.

  161. Miller, Jordan S., Stevens, Kelly R., Yang, Michael T., Baker, Brendon M., Nguyen, Duc-Huy T., Cohen, Daniel M., Toro, Esteban, Chen, Alice A., Galie, Peter A., Yu, Xiang, Chaturvedi, Ritika, Bhatia, Sangeeta N., Chen, Christopher S.. Rapid casting of patterned vascular networks for perfusable engineered 3D tissues. Nature materials, vol.11, no.9, 768-774.

  162. Carosio, Silvia, Barberi, Laura, Rizzuto, Emanuele, Nicoletti, Carmine, Prete, Zaccaria Del, Musarò, Antonio. Generation of eX vivo-vascularized Muscle Engineered Tissue (X-MET). Scientific reports, vol.3, 1420-.

  163. Kaully, Tamar, Kaufman-Francis, Keren, Lesman, Ayelet, Levenberg, Shulamit. Vascularization-The Conduit to Viable Engineered Tissues. Tissue engineering. Part B, Reviews, vol.15, no.2, 159-169.

  164. Yan, Wentao, George, Sheela, Fotadar, Upinder, Tyhovych, Natalia, Kamer, Angela, Yost, Michael J., Price, Robert L., Haggart, Charles R., Holmes, Jeffrey W., Terracio, Louis. Tissue Engineering of Skeletal Muscle. Tissue engineering, vol.13, no.11, 2781-2790.

  165. Koffler, Jacob, Kaufman-Francis, Keren, Shandalov, Yulia, Egozi, Dana, Amiad Pavlov, Daria, Landesberg, Amir, Levenberg, Shulamit. Improved vascular organization enhances functional integration of engineered skeletal muscle grafts. Proceedings of the National Academy of Sciences of the United States of America, vol.108, no.36, 14789-14794.

  166. 10.1002/(SICI)1097-4598(199607)19:7<853::AID-MUS7>3.0.CO;2-8 

  167. Camargo, Fernando D., Chambers, Stuart M., Drew, Erin, McNagny, Kelly M., Goodell, Margaret A.. Hematopoietic stem cells do not engraft with absolute efficiencies. Blood, vol.107, no.2, 501-507.

  168. Blood Glimm H 4185 96 2000 10.1182/blood.V96.13.4185 Human hematopoietic stem cells stimulated to proliferate in vitro lose engraftment potential during their S/G(2)/M transit and do not reenter G(0) 

  169. Cell Transplant. Guérette B 101 6 1997 Control of inflammatory damage by anti-LFA-1: increase success of myoblast transplantation 

  170. Skuk, Daniel, Paradis, Martin, Goulet, Marlyne, Chapdelaine, Pierre, Rothstein, David M, Tremblay, Jacques P. Intramuscular Transplantation of Human Postnatal Myoblasts Generates Functional Donor-Derived Satellite Cells. Molecular therapy : the journal of the American Society of Gene Therapy, vol.18, no.9, 1689-1697.

  171. Skuk, Daniel, Goulet, Marlyne, Tremblay, Jacques P.. Intramuscular Transplantation of Myogenic Cells in Primates: Importance of Needle Size, Cell Number, and Injection Volume. Cell transplantation, vol.23, no.1, 13-25.

  172. Rossi, Carlo Alberto, Pozzobon, Michela, De Coppi, Paolo. Advances in musculoskeletal tissue engineering : Moving towards therapy. Organogenesis, vol.6, no.3, 167-172.

  173. Patenaude, Mathew, Smeets, Niels M. B., Hoare, Todd. Designing Injectable, Covalently Cross‐Linked Hydrogels for Biomedical Applications. Macromolecular rapid communications, vol.35, no.6, 598-617.

  174. Kim, Jennifer, Hadlock, Tessa, Cheney, Mack, Varvares, Mark, Marler, Jennifer. Muscle Tissue Engineering for Partial Glossectomy Defects. Archives of facial plastic surgery, vol.5, no.5, 403-.

  175. Hwang, Chang Mo, Sant, Shilpa, Masaeli, Mahdokht, Kachouie, Nezamoddin N, Zamanian, Behnam, Lee, Sang-Hoon, Khademhosseini, Ali. Fabrication of three-dimensional porous cell-laden hydrogel for tissue engineering. Biofabrication, vol.2, no.3, 035003-.

  176. Galvez, Beatriz G., Sampaolesi, Maurilio, Brunelli, Silvia, Covarello, Diego, Gavina, Manuela, Rossi, Barbara, Costantin, Gabriela, Torrente, Yvan, Cossu, Giulio. Complete repair of dystrophic skeletal muscle by mesoangioblasts with enhanced migration ability. The Journal of cell biology, vol.174, no.2, 231-243.

  177. Pessina, Patrizia, Kharraz, Yacine, Jardí, Mercè, Fukada, So-ichiro, Serrano, Antonio L., Perdiguero, Eusebio, Muñoz-Cánoves, Pura. Fibrogenic Cell Plasticity Blunts Tissue Regeneration and Aggravates Muscular Dystrophy. Stem cell reports, vol.4, no.6, 1046-1060.

  178. Biressi, Stefano, Miyabara, Elen H., Gopinath, Suchitra D., M. Carlig, Poppy M., Rando, Thomas A.. A Wnt-TGFβ2 axis induces a fibrogenic program in muscle stem cells from dystrophic mice. Science translational medicine, vol.6, no.267, 267ra176-267ra176.

  179. Elabd, Christian, Cousin, Wendy, Upadhyayula, Pavan, Chen, Robert Y., Chooljian, Marc S., Li, Ju, Kung, Sunny, Jiang, Kevin P., Conboy, Irina M.. Oxytocin is an age-specific circulating hormone that is necessary for muscle maintenance and regeneration. Nature communications, vol.5, 4082-4082.

  180. Negroni, Elisa, Vallese, Denis, Vilquin, Jean-Thomas, Butler-Browne, Gillian, Mouly, Vincent, Trollet, Capucine. Current advances in cell therapy strategies for muscular dystrophies. Expert opinion on biological therapy, vol.11, no.2, 157-176.

  181. Asai, Akihiro, Sahani, Nita, Kaneki, Masao, Ouchi, Yasuyoshi, Martyn, J.A. Jeevendra, Yasuhara, Shingo Egusa. Primary Role of Functional Ischemia, Quantitative Evidence for the Two-Hit Mechanism, and Phosphodiesterase-5 Inhibitor Therapy in Mouse Muscular Dystrophy. PloS one, vol.2, no.8, e806-.

  182. Mendell, J. R., Engel, W. King, Derrer, E. C.. Duchenne Muscular Dystrophy: Functional Ischemia Reproduces Its Characteristic Lesions. Science, vol.172, no.3988, 1143-1145.

  183. Sander, Mikael, Chavoshan, Bahman, Harris, Shannon A., Iannaccone, Susan T., Stull, James T., Thomas, Gail D., Victor, Ronald G.. Functional muscle ischemia in neuronal nitric oxide synthase-deficient skeletal muscle of children with Duchenne muscular dystrophy. Proceedings of the National Academy of Sciences of the United States of America, vol.97, no.25, 13818-13823.

  184. Thomas, Gail D.. Functional muscle ischemia in Duchenne and Becker muscular dystrophy. Frontiers in physiology, vol.4, 381-.

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

오픈액세스(OA) 유형

GOLD(Hybrid)

저자가 APC(Article Processing Charge)를 지불한 논문에 한하여 자유로운 이용이 가능한, hybrid 저널에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로