$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Effectual binding of gallic acid with p-sulfonatocalix[4]arene: An experimental and theoretical interpretation

Journal of luminescence, v.196, 2018년, pp.392 - 398  

Saravanan, Chokalingam (Department of Industrial Chemistry, Alagappa University, Karaikudi, Tamilnadu, India) ,  Chitumalla, Ramesh Kumar (Department of Nanoenergy Engineering, Pusan National University, Busan 609-735, Republic of Korea) ,  Ashwin, Bosco Christin Maria Arputham (Department of Industrial Chemistry, Alagappa University, Karaikudi, Tamilnadu, India) ,  Senthilkumaran, Marimuthu (Department of Industrial Chemistry, Alagappa University, Karaikudi, Tamilnadu, India) ,  Suresh, Palaniswamy (Department of Natural Products Chemistry, Madurai Kamaraj University, Madurai, Tamilnadu, India) ,  Jang, Joonkyung (Department of Nanoenergy Engineering, Pusan National University, Busan 609-735, Republic of Korea) ,  Muthu Mareeswaran, Paulpandian (Department of Industrial Chemistry, Alagappa University, Karaikudi, Tamilnadu, India)

Abstract AI-Helper 아이콘AI-Helper

The host-guest interaction of gallic acid (GA) with p-sulfonatocalix[4] arene (p-SC4) is studied using emission and excited state lifetime techniques. The quenching effect on the emission intensity and excited state lifetime is observed upon binding. The impact of oxidation potential upon binding is...

주제어

참고문헌 (58)

  1. J. Phys. Chem. B Francisco 118 4710 2014 10.1021/jp502097q Ionic exchange in p-Sulfonatocalix[4]arene-mediated formation of metal-ligand complexes 

  2. J. Solid State Chem. Zheng 183 1457 2010 10.1016/j.jssc.2010.04.025 Guests inducing p-sulfonatocalix[4]arenes into nanocapsule and layer structure 

  3. RSC Adv. Abd El-Rahman 5 62469 2015 10.1039/C5RA10166B A novel approach for spectrophotometric determination of succinylcholine in pharmaceutical formulation via host-guest complexation with water-soluble p-sulfonatocalixarene 

  4. J. Incl. Phenom. Macrocycl. Chem. Mokhtari 73 1 2012 10.1007/s10847-011-0062-z Applications of calixarene nano-baskets in pharmacology 

  5. Sens. Actuators B Kurzątkowska 218 111 2015 10.1016/j.snb.2015.04.110 Calix[4]arene derivatives as dopamine hosts in electrochemical sensors 

  6. Eur. J. Org. Chem. Li 2012 3962 2012 10.1002/ejoc.201200515 Complexation of p-sulfonatocalixarenes with local anaesthetics guests: binding structures, stabilities, and thermodynamic origins 

  7. J. Mol. Liq. Chao 213 173 2016 10.1016/j.molliq.2015.11.014 Investigation of the inclusion interaction of p-sulfonatocalix[6]arene with trimebutine maleate 

  8. Cryst. Growth Des. Danylyuk 10 4542 2010 10.1021/cg100831c Structural diversity in the crystalline complexes of para-sulfonato-calix[4]arene with bipyridinium derivatives 

  9. Org. Biomol. Chem. Arena 4 243 2006 10.1039/B514896K Inclusion of naturally occurring amino acids in water soluble calix[4]arenes: a microcalorimetric and 1H NMR investigation supported by molecular modeling 

  10. Chem. Commun. Perret 2425 2006 10.1039/b600720c Biochemistry of the para-sulfonato-calix[n]arenes 

  11. Org. Biomol. Chem. Gharat 2016 10.1039/C6OB02186G Contrasting tunability of quinizarin fluorescence with p-sulfonatocalix[4,6]arene hosts 

  12. Soft Matter Qin 10 2253 2014 10.1039/C3SM52866A Supra-amphiphilic aggregates formed by p-sulfonatocalix[4]arenes and the antipsychotic drug chlorpromazine 

  13. J. Incl. Phenom. Macrocycl. Chem. Ashwin 2017 Spectral, electrochemical and computational investigations on the host-guest interaction of Coumarin-460 with p-sulfonatocalix[4]arene 

  14. J. Phys. Org. Chem. Ashwin 2017 A combined experimental and theoretical study on p-sulfonatocalix[4]arene encapsulated 7-methoxycoumarin 

  15. J. Fluoresc. Senthilkumaran 27 2159 2017 10.1007/s10895-017-2155-6 Spectral, electrochemical and computational investigations of binding of n-(4-hydroxyphenyl)-imidazole with p-sulfonatocalix[4]arene 

  16. J. Agric. Food Chem. Wang 59 4294 2011 10.1021/jf104571q Paraquat detoxification with p-sulfonatocalix-[4]arene by a pharmacokinetic study 

  17. ChemistrySelect Ashwin 2 931 2017 10.1002/slct.201601939 Synthesis of a Safranin T - p-sulfonatocalix[4]arene complex by means of supramolecular complexation 

  18. ChemistrySelect Madasamy 2 1175 2017 10.1002/slct.201601818 A supramolecular investigation on the interactions between ethyl terminated bis-viologen derivatives with sulfonato calix[4]arenes 

  19. J. Phys. Org. Chem. Muthu Mareeswaran 25 1217 2012 10.1002/poc.2996 Recognition of aromatic amino acids and proteins with p-sulfonatocalix[4]arene - a luminescence and theoretical approach 

  20. J. Incl. Phenom. Macrocycl. Chem. Saravanan 88 239 2017 10.1007/s10847-017-0729-1 Spectral and electrochemical investigation of 1,8-diaminonaphthalene upon encapsulation of p-sulfonatocalix[4]arene 

  21. Curr. Drug Discov. Technol. Wenzhan 5 129 2008 10.2174/157016308784746265 Effect of para-sulfonato-calix[n]arenes on the solubility, chemical stability, and bioavailability of a water insoluble drug nifedipine 

  22. Eur. J. Pharm. Biopharm. Yang 58 629 2004 10.1016/j.ejpb.2004.04.010 The solubilization of the poorly water soluble drug nifedipine by water soluble 4-sulphonic calix[n]arenes 

  23. J. Pharm. Pharmacol. Yang 56 703 2004 10.1211/0022357023439 Aqueous solubilization of furosemide by supramolecular complexation with 4-sulphonic calix[n]arenes 

  24. J. Incl. Phenom. Macrocycl. Chem. Song 72 389 2012 10.1007/s10847-011-9994-6 Spectroscopic studies on the inclusion interaction of p-sulfonatocalix[6]arene with vitamin B6 

  25. New J. Chem. Muthu Mareeswaran 38 1336 2014 10.1039/c3nj00935a p-Sulfonatocalix[4]arene as a carrier for curcumin 

  26. J. Chem. Eng. Data Fazary 54 35 2009 10.1021/je800441u Iron complexation studies of gallic acid 

  27. Ind. Crops Prod. da Rosa 46 138 2013 10.1016/j.indcrop.2012.12.053 Microencapsulation of gallic acid in chitosan, β-cyclodextrin and xanthan 

  28. J. Phys. Chem. B Marino 118 10380 2014 10.1021/jp505589b Radical scavenging ability of gallic acid toward OH and OOH radicals. Reaction mechanism and rate constants from the density functional theory 

  29. Food Anal. Methods Shojaei 9 2721 2016 10.1007/s12161-016-0459-9 An electrochemical nanosensor based on molecularly imprinted polymer (MIP) for detection of gallic acid in fruit juices 

  30. ACS Appl. Mater. Interfaces Deligiannakis 4 6609 2012 10.1021/am301751s Antioxidant and antiradical SiO2 nanoparticles covalently functionalized with gallic acid 

  31. J. Electroanal. Chem. Abdel-Hamid 704 32 2013 10.1016/j.jelechem.2013.06.006 Adsorptive stripping voltammetric determination of gallic acid using an electrochemical sensor based on polyepinephrine/glassy carbon electrode and its determination in black tea sample 

  32. Mater. Sci. Eng. C Gao 57 279 2015 10.1016/j.msec.2015.07.025 An electrochemical sensor for gallic acid based on Fe2O3/electro-reduced graphene oxide composite: estimation for the antioxidant capacity index of wines 

  33. J. Agric. Food Chem. Huang 60 2328 2012 10.1021/jf203709q Fresh green tea and gallic acid ameliorate oxidative stress in kainic acid-induced status epilepticus 

  34. Biomacromolecules Lai 16 2950 2015 10.1021/acs.biomac.5b00854 Antioxidant gallic acid-functionalized biodegradable in situ gelling copolymers for cytoprotective antiglaucoma drug delivery systems 

  35. J. Agric. Food Chem. Liu 62 11672 2014 10.1021/jf504035s Proteomic study reveals a co-occurrence of gallic acid-induced apoptosis and glycolysis in B16F10 melanoma cells 

  36. J. Clin. Biochem. Nutr. Maurya 48 85 2011 10.3164/jcbn.11-004FR Anticancer property of gallic acid in A549, a human lung adenocarcinoma cell line, and possible mechanisms 

  37. J. Agric. Food Chem. Hsu 59 1996 2011 10.1021/jf103656v Gallic acid induces G2/M phase arrest of breast cancer cell MCF-7 through stabilization of p27Kip1 attributed to disruption of p27Kip1/Skp2 complex 

  38. Pharm. Res. Kaur 26 2133 2009 10.1007/s11095-009-9926-y Gallic acid, an active constituent of grape seed extract, exhibits anti-proliferative, pro-apoptotic and anti-tumorigenic effects against prostate carcinoma xenograft growth in nude mice 

  39. J. Agric. Food Chem. You 59 763 2011 10.1021/jf103379d The effects of mitogen-activated protein kinase inhibitors or small interfering RNAs on gallic acid-induced HeLa cell death in relation to reactive oxygen species and glutathione 

  40. J. Med. Chem. Jara 57 2440 2014 10.1021/jm500174v Antiproliferative and uncoupling effects of delocalized, lipophilic, cationic gallic acid derivatives on cancer cell Lines. Validation in vivo in singenic mice 

  41. J. Fluoresc. Rajeswari 26 531 2016 10.1007/s10895-015-1738-3 Electron transfer studies of ruthenium(II) complexes with biologically important phenolic acids and tyrosine 

  42. J. Incl. Phenom. Macrocycl. Chem. Sankaranarayanan 67 461 2010 10.1007/s10847-009-9729-0 A study on the inclusion complexation of 3,4,5-trihydroxybenzoic acid with β-cyclodextrin at different pH 

  43. Chem. Commun. Xiong 880 2008 10.1039/B716270G Synthesis of para-sulfonatocalix[4]arene-modified silver nanoparticles as colorimetric histidine probes 

  44. Cryst. Eng. Comm. Miller-Shakesby 18 4977 2016 10.1039/C6CE00209A Synthesis, structures and cytotoxicity studies of p-sulfonatocalix[4]arene lanthanide complexes 

  45. Lakowicz 2007 Principles of Fluorescence Spectroscopy 

  46. Spectrochim. Acta A: Mol. Biomol. Spectrosc. Srinivasan 79 169 2011 10.1016/j.saa.2011.02.030 Study of inclusion complex of β-cyclodextrin and diphenylamine: photophysical and electrochemical behaviors 

  47. J. Mol. Struct. Paramasivaganesh 1048 399 2013 10.1016/j.molstruc.2013.04.072 Studies on inclusion complexation between 4,4′-dihydroxybiphenyl and β-cyclodextrin by experimental and theoretical approach 

  48. Tetrahedron Mc Dermott 68 3815 2012 10.1016/j.tet.2012.03.064 Complexation study and spectrofluorometric determination of the binding constant for diquat and p-sulfonatocalix[4]arene 

  49. Supramol. Chem. Ashwin 30 32 2018 10.1080/10610278.2017.1351612 Spectral and electrochemical investigation of p-sulfonatocalix[4]arene-stabilized vitamin E aggregation 

  50. J. Electroanal. Chem. Diao 567 325 2004 10.1016/j.jelechem.2004.01.016 The electrochemical behavior of p-sulfonated calix[4]arene 

  51. Electroanalysis Diao 17 1279 2005 10.1002/elan.200403242 The electrochemical behavior of p-sulfonated sodium salt of calix[6]arene 

  52. Sens. Actuators B Luo 186 84 2013 10.1016/j.snb.2013.05.074 Sensitive detection of gallic acid based on polyethyleneimine-functionalized graphene modified glassy carbon electrode 

  53. Electroanalysis Díaz González 21 2249 2009 10.1002/elan.200904678 Electrochemical study of phenolic compounds as enhancers in laccase-catalyzed oxidative reactions 

  54. J. Electroanal. Chem. Abdel-Hamid 657 107 2011 10.1016/j.jelechem.2011.03.030 Electrochemical behavior of antioxidants: I. Mechanistic study on electrochemical oxidation of gallic acid in aqueous solutions at glassy-carbon electrode 

  55. Chemosphere Panizza 77 1060 2009 10.1016/j.chemosphere.2009.09.007 Electrochemical degradation of gallic acid on a BDD anode 

  56. Theor. Chem. Acc. Zhao 120 215 2008 10.1007/s00214-007-0310-x 

  57. M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery, J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski, D.J. Fox, Gaussian 09, Revision B.01, in, Wallingford CT, 2009. 

  58. Mol. Phys. Boys 19 553 1970 10.1080/00268977000101561 The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors 

LOADING...

관련 콘텐츠

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로