$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Painting with light-powered bacteria 원문보기

Nature communications, v.9 no.1, 2018년, pp.768 -   

Arlt, Jochen (School of Physics and Astronomy, The University of Edinburgh, Peter Guthrie Tait Road, Edinburgh, EH9 3FD UK) ,  Martinez, Vincent A. (School of Physics and Astronomy, The University of Edinburgh, Peter Guthrie Tait Road, Edinburgh, EH9 3FD UK) ,  Dawson, Angela (School of Physics and Astronomy, The University of Edinburgh, Peter Guthrie Tait Road, Edinburgh, EH9 3FD UK) ,  Pilizota, Teuta (School of Biological Sciences and Centre for Synthetic and Systems Biology, The University of Edinburgh, Alexander Crum Brown Road, Edinburgh, EH9 3FF UK) ,  Poon, Wilson C. K. (School of Physics and Astronomy, The University of Edinburgh, Peter Guthrie Tait Road, Edinburgh, EH9 3FD UK)

Abstract AI-Helper 아이콘AI-Helper

Self-assembly is a promising route for micro- and nano-fabrication with potential to revolutionise many areas of technology, including personalised medicine. Here we demonstrate that external control of the swimming speed of microswimmers can be used to self assemble reconfigurable designer structur...

참고문헌 (44)

  1. 1. Whitesides GM Grzybowski B Self-assembly at all scales Science 2002 295 2418 2421 10.1126/science.1070821 11923529 

  2. 2. Kim Y Shah AA Solomon MJ Spatially and temporally reconfigurable assembly of colloidal crystals Nat. Commun. 2014 5 1 8 

  3. 3. Caspar DLD Klug A Physical principles in the construction of regular viruses Cold Spring Harb. Symp. Quant. Biol. 1962 27 1 24 10.1101/SQB.1962.027.001.005 14019094 

  4. 4. Romano F Sciortino F Colloidal self assembly: patchy from the bottom up Nat. Mater. 2011 10 171 173 10.1038/nmat2975 21336295 

  5. 5. Pinçe E Disorder-mediated crowd control in an active matter system Nat. Commun. 2016 7 10907 10.1038/ncomms10907 26956085 

  6. 6. Takatori SC De Dier R Vermant J Brady JF Acoustic trapping of active matter Nat. Commun. 2016 7 10694 10.1038/ncomms10694 26961816 

  7. 7. Poon WCK Bechinger C Sciortino F Ziherl P From Clarkia to Escherichia and Janus: the physics of natural and synthetic active colloids Physics of Complex Colloids 2013 Bologna Società Italiana di Fisica 317 386 

  8. 8. Ramaswamy S The mechanics and statistics of active matter Annu. Rev. Condens. Matter Phys. 2010 1 323 345 10.1146/annurev-conmatphys-070909-104101 

  9. 9. Marchetti MC Hydrodynamics of soft active matter Rev. Mod. Phys. 2014 85 1143 10.1103/RevModPhys.85.1143 

  10. 10. Cates ME Diffusive transport without detailed balance in motile bacteria: does microbiology need statistical physics? Rep. Prog. Phys. 2012 75 042601 10.1088/0034-4885/75/4/042601 22790505 

  11. 11. Sundararajan S Lammert PE Zudans AW Crespi VH Sen A Catalytic motors for transport of colloidal cargo Nano. Lett. 2008 8 1271 1276 10.1021/nl072275j 18416540 

  12. 12. Koumakis N Leopore A Maggi C Di Leonardo R Targeted delivery of colloids by swimming bacteria Nat. Commun. 2013 4 2588 10.1038/ncomms3588 24100868 

  13. 13. Lozano C ten Hagen B Löwen H Bechinger C Phototaxis of synthetic microswimmers in optical landscapes Nat. Commun. 2016 7 12828 10.1038/ncomms12828 27687580 

  14. 14. Li W Wu X Qin H Zhao Z Liu H Light-driven and light-guided microswimmers Adv. Func. Mat. 2016 26 3164 3171 10.1002/adfm.201505378 

  15. 15. Sen A Ibele M Hong Y Velegol D Chemo and phototactic nano/microbots Faraday Discuss. 2009 143 15 10.1039/b900971j 20334092 

  16. 16. Palacci J Sacanna S Steinberg AP Pine DJ Chaikin PM Living crystals of light-activated colloidal surfers Science 2013 339 936 940 10.1126/science.1230020 23371555 

  17. 17. Walter JM Greenfield D Bustamante C Liphardt J Light-powering Escherichia coli with proteorhodopsin Proc. Natl Acad. Sci. USA 2007 104 2408 2412 10.1073/pnas.0611035104 17277079 

  18. 18. Vizsnyiczai G Light controlled 3D micromotors powered by bacteria Nat. Commun. 2017 8 15974 10.1038/ncomms15974 28656975 

  19. 19. Schwarz-Linek J Phase separation and rotor self-assembly in active particle suspensions Proc. Natl Acad. Sci. USA 2012 109 4052 4057 10.1073/pnas.1116334109 22392986 

  20. 20. Theurkauff I Cottin-Bizonne C Palacci J Ybert C Bocquet L Dynamic clustering in active colloidal suspensions with chemical signaling Phys. Rev. Lett. 2012 108 268303 10.1103/PhysRevLett.108.268303 23005020 

  21. 21. Stenhammar, J., Wittkowski, R., Marenduzzo, D. & Cates, M. E. Light-induced self-assembly of active rectification devices. Sci. Adv. 2, e1501850 (2016). 

  22. 22. Schwarz-Linek J Escherichia coli as a model active colloid: a practical introduction Colloids Surf. B 2016 137 2 16 10.1016/j.colsurfb.2015.07.048 

  23. 23. Manson MD Tedesco P Berg HC Harold FM van der Drift C A proton motive force drives bacterial flagella Proc. Natl Acad. Sci. USA 1977 74 3060 3064 10.1073/pnas.74.7.3060 19741 

  24. 24. Adler J Templeton B The effect of environmental conditions on the motility of Escherichia coli J. Gen. Microbiol. 1967 46 175 184 10.1099/00221287-46-2-175 4961758 

  25. 25. Béjà O Bacterial rhodopsin: evidence for a new type of phototrophy in the sea Science 2000 289 1902 1906 10.1126/science.289.5486.1902 10988064 

  26. 26. Wilson MJ Differential dynamic microscopy of bacterial motility Phys. Rev. Lett. 2011 106 018101 10.1103/PhysRevLett.106.018101 21231772 

  27. 27. Tipping MJ Steel BC Delalez NJ Berry RM Armitage JP Quantification of flagellar motor stator dynamics through in vivo proton-motive force control Mol. Microbiol. 2013 87 338 347 10.1111/mmi.12098 23216828 

  28. 28. Keis S Stocker A Dimroth P Cook GM Inhibition of ATP hydrolysis by thermoalkaliphilic F 1 F o -ATP synthase is controlled by the C terminus of the ε subunit J. Bact. 2006 188 3796 3804 10.1128/JB.00040-06 16707672 

  29. 29. Kanazawa H Tamura F Mabuchi K Miki T Futai M Organization of unc gene-cluster of Echerichia coli coding for proton-translocating ATPase of oxidative-phorphorylation Proc. Natl Acad. Sci. USA 1980 77 7005 7009 10.1073/pnas.77.12.7005 6261234 

  30. 30. Leake MC Stoichiometry and turnover in single, functioning membrane protein complexes Nature 2006 443 355 358 10.1038/nature05135 16971952 

  31. 31. Wu M Roberts JW Kim S Koch DL DeLisa MP Collective bacterial dynamics revealed using a three-dimensional population-scale defocused particle tracking technique Appl. Environ. Microbiol. 2006 72 4987 4994 10.1128/AEM.00158-06 16820497 

  32. 32. Fernandez-Rodriguez J Moser F Song M Voigt CA Engineering RGB color vision into Escherichia coli Nat. Chem. Biol. 2017 13 706 708 10.1038/nchembio.2390 28530708 

  33. 33. Tailleur J Cates ME Sedimentation, trapping and rectification of dilute bacteria Europhys. Lett. 2009 86 60002 10.1209/0295-5075/86/60002 

  34. 34. Nomura T Morimoto Y Ishikawa M Tokumoto H Konishi Y Synthesis of hollow silica microparticles from bacterial templates Adv. Powder Technol. 2010 21 8 12 10.1016/j.apt.2009.07.005 

  35. 35. Piotter V Powder injection moulding of metallic and ceramic micro parts Microsyst. Technol. 2011 17 251 263 10.1007/s00542-011-1274-2 

  36. 36. DeWitt SK Adelberg EA The occurrence of a genetic transposition in a strain of Escherichia coli Genetics 1962 47 577 685 17248104 

  37. 37. Merlin C McAteer S Masters M Tools for characterization of Escherichia coli genes of unknown function J. Bacteriol. 2002 184 4573 4581 10.1128/JB.184.16.4573-4581.2002 12142427 

  38. 38. Baba T Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection Mol. Syst. Biol. 2006 2 1 11 10.1038/msb4100050 

  39. 39. Cerbino R Trappe V Differential dynamic microscopy: Probing wave vector dependent dynamics with a microscope Phys. Rev. Lett. 2008 100 188102 10.1103/PhysRevLett.100.188102 18518417 

  40. 40. Martinez VA Differential dynamic microscopy: a high-throughput method for characterizing the motility of microorganisms Biophys. J. 2012 103 1637 1647 10.1016/j.bpj.2012.08.045 23083706 

  41. 41. Reufer M Martinez VA Schurtenberger P Poon WCK Differential dynamic microscopy for anisotropic colloidal dynamics Langmuir 2012 28 4618 4624 10.1021/la204904a 22324390 

  42. 42. Lu PJ Characterizing concentrated, multiply scattering, and actively driven fluorescent systems with confocal differential dynamic microscopy Phys. Rev. Lett. 2012 108 218103 10.1103/PhysRevLett.108.218103 23003305 

  43. 43. Pluta, M. Advanced Light Microscopy , vol. 2 Specialized Methods (Elsevier, 1989). 

  44. 44. Arlt, J., Martinez, V. A., Dawson, A., Pilizota, T. & Poon, W. C. K. Painting with bacteria: smart templated self assembly using motile bacteria (dataset). Edinburgh DataShare 10.7488/ds/2263 (2017). 

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로