$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Highly stable and efficient solid-state solar cells based on methylammonium lead bromide (CH3NH3PbBr3) perovskite quantum dots 원문보기

NPG Asia Materials, v.7 no.8, 2015년, pp.e208 - e208  

Mali, Sawanta S ,  Shim, Chang Su ,  Hong, Chang Kook

초록이 없습니다.

참고문헌 (34)

  1. Z. Anorg. Chem. HL Wells 3 195 1893 10.1002/zaac.18930030124 Wells, H. L. Über die Cäsium- und Kalium-Bleihalogenide. Z. Anorg. Chem. 3, 195-210 (1893). 

  2. J. Chem. Phys. A Poglitsch 87 6373 1987 10.1063/1.453467 Poglitsch, A. & Weber, D. Dynamic disorder in methylammoniumtrihalogenoplumbates (II) observed by millimeter-wave spectroscopy. J. Chem. Phys. 87, 6373-6378 (1987). 

  3. Nature CK MØLLER 182 1436 1958 10.1038/1821436a0 MØLLER, C. K. Crystal structure and photoconductivity of cesium plumbohalides. Nature 182, 1436 (1958). 

  4. J. Phys. Chem. Lett. B Suarez 5 1628 2014 10.1021/jz5006797 Suarez, B., Gonzalez-Pedro, V., Ripolles, T. S., Sanchez, R. S., Otero, L. & Mora-Sero, I. Recombination study of combined halides (Cl, Br, I) perovskite solar cells. J. Phys. Chem. Lett. 5, 1628-1635 (2014). 

  5. Nano Letters Dong Myung Jang 15 8 5191 2015 10.1021/acs.nanolett.5b01430 Jang, D. M., Park, K., Kim, D. H., Park, J, Shojaei, F, Kang, H. S, Ahn, J.-P, Lee, J. W & Song, J. K. Reversible halide exchange reaction of organometal trihalide perovskite colloidal nanocrystals for full-range band gap tuning. Nano Letter (e-pub ahead of print 10 July 2015; doi:10.1021/acs.nanolett.5b01430). 

  6. Nanoscale J-H Im 3 4088 2011 10.1039/c1nr10867k Im, J.-H., Lee, C.-R., Lee, J.-W., Park, S.-W. & Park, N. G. 6.5% Efficient perovskite quantum-dot-sensitized solar cell. Nanoscale 3, 4088-4093 (2011). 

  7. Nature J Burschka 499 316 2013 10.1038/nature12340 Burschka, J., Pellet, N., Moon, S. J., Humphry-Baker, R., Gao, P., Nazeeruddin, M. K. & Grätzel, M. Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 499, 316-319 (2013). 

  8. Science H Zhou 345 542 2014 10.1126/science.1254050 Zhou, H., Chen, Q., Li, G., Luo, S., Song, T., Duan, H.-S., Hong, Z., You, J., Liu, Y. & Yang, Y. Interface engineering of highly efficient perovskite solar cells. Science 345, 542-546 (2014). 

  9. Nature M Liu 501 395 2013 10.1038/nature12509 Liu, M., Johnston, M. B. & Snaith, H. J. Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature 501, 395-398 (2013). 

  10. Science SD Stranks 342 341 2013 10.1126/science.1243982 Stranks, S. D., Eperon, G. E., Grancini, G., Menelaou, C., Alcocer, M. J. P., Leijtens, T., Herz, L. M., Petrozza, A. & Snaith, H. J. Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science 342, 341-344 (2013). 

  11. Science MM Lee 338 643 2012 10.1126/science.1228604 Lee, M. M., Teuscher, J., Miyasaka, T., Murakami, T. N. & Snaith, H. J. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 338, 643 (2012). 

  12. Adv. Mater. YH Hu 26 2102 2014 10.1002/adma.201304732 Hu, Y. H. Novel meso-superstructured solar cells (MSSCs) with a high efficiency exceeding 12%". Adv. Mater. 26, 2102 (2014). 

  13. Mater. Today SS Mali 18 172 2015 10.1016/j.mattod.2015.02.011 Mali, S. S., Shim, C. S., Patil, P. S. & Hong, C. K. Once again, organometallic tri-halide perovskites: Efficient light harvester for solid state perovskite solar cells. Mater. Today 18, 172-173 (2015). 

  14. Chem. Mater. SS Mali 27 1541 2015 10.1021/cm504558g Mali, S. S., Shim, C. S., Park, H. K., Heo, J., Patil, P. S. & Hong, C. K. Ultrathin atomic layer deposited TiO2 for surface passivation of hydrothermally grown 1D TiO2 nanorod arrays for efficient solid-state perovskite solar cells. Chem. Mater. 27, 1541-1551 (2015). 

  15. ACS Nano J You 8 1674 2014 10.1021/nn406020d You, J., Hong, Z., Yang, Y., Chen, Q., Cai, M., Song, T.-B., Chen, C.-C., Lu, S., Liu, Y., Zhou, H. & Yang, Y. Low-temperature solution-processed perovskite solar cells with high efficiency and flexibility. ACS Nano 8, 1674-1680 (2014). 

  16. Energy Environ. Sci. J Seo 7 2642 2014 10.1039/C4EE01216J Seo, J., Park, S., Kim, Y. C., Jeon, N. J., Noh, J. H., Yoon, S. C. & Seok, S. I. Benefits of very thin PCBM and LiF layers for solution-processed p-i-n perovskite solar cells. Energy Environ. Sci. 7, 2642-2646 (2014). 

  17. Nat. Mater. NJ Jeon 13 897 2014 10.1038/nmat4014 Jeon, N. J., Noh, J. H., Kim, Y. C., Yang, W. S., Ryu, S. & Seok, S. I. Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells. Nat. Mater. 13, 897-903 (2014). 

  18. Nature NJ Jeon 517 476 2015 10.1038/nature14133 Jeon, N. J., Noh, J. H., Yang, W. S., Kim, Y. C., Ryu, S., Seo, J. & Seok, S. I. Compositional engineering of perovskite materials for high-performance solar cells. Nature 517, 476-480 (2015). 

  19. J. Am. Chem. Soc. LC Schmidt 136 850 2014 10.1021/ja4109209 Schmidt, L. C., Pertegás, A., González-Carrero, S., Malinkiewicz, O., Agouram, S., Espallargas, G. M., Bolink, H. J., Galian, R. E. & Pérez-Prieto, J. Nontemplate synthesis of CH3NH3PbBr3 perovskite nanoparticles. J. Am. Chem. Soc. 136, 850-853 (2014). 

  20. Adv. Mater. JH Heo 26 8179 2014 10.1002/adma.201403140 Heo, J. H., Song, D. H. & Im, S. H. Planar CH3NH3PbBr3 hybrid solar cells with 10.4% power conversion efficiency, fabricated by controlled crystallization in the spin-coating process. Adv. Mater. 26, 8179-8183 (2014). 

  21. Solid State Commun. K Tanaka 127 619 2003 10.1016/S0038-1098(03)00566-0 Tanaka, K., Takahashi, T., Ban, T., Kondo, T., Uchida, K. & Miura, N. Comparative study on the excitons in lead-halide-based perovskite-type crystals CH3NH3PbBr3 CH3NH3PbI3 . Solid State Commun. 127, 619-623 (2003). 

  22. Energy Environ. Sci. B Cai 6 1480 2013 10.1039/c3ee40343b Cai, B., Xing, Y., Yang, Z., Zhang, W. H. & Qiu, J. High performance hybrid solar cells sensitized by organo lead halide perovskites. Energy Environ. Sci. 6, 1480-1485 (2013). 

  23. J. Phys. Chem. Lett. E Edri 4 897 2013 10.1021/jz400348q Edri, E., Kirmayer, S., Cahen, D. & Hodes, G. High open-circuit voltage solar cells based on organic−inorganic lead bromide perovskite. J. Phys. Chem. Lett. 4, 897-902 (2013). 

  24. Nano Lett. JH Noh 13 1764 2013 10.1021/nl400349b Noh, J. H., HyukIm, S., Heo, J. H., Mandal, T. N. & Seok, S. I. Chemical management for colorful efficient and stable inorganic-organic hybrid nanostructured solar cells. Nano Lett. 13, 1764-1769 (2013). 

  25. Energy Environ. Sci. S Ryu 7 2614 2014 10.1039/C4EE00762J Ryu, S., Noh, J. H., Jeon, N. J., Kim, Y. C., Yang, W. S., Seo, J. & Seok, S. I. Voltage output of efficient perovskite solar cells with high open-circuit voltage and fill factor. Energy Environ. Sci. 7, 2614-2618 (2014). 

  26. Nano Energy C Liu 12 59 2015 10.1016/j.nanoen.2014.12.004 Liu, C., Qiu, Z., Meng, W., Chen, J., Qi, J., Dong, C. & Wang, M. Effects of interfacial characteristics on photovoltaic performance in CH3NH3PbBr3-based bulk perovskite solar cells with core/shell nanoarray as electron transporter. Nano Energy 12, 59-68 (2015). 

  27. J. Phys. Condens. Matter IB Koutselas 8 1217 1996 10.1088/0953-8984/8/9/012 Koutselas, I. B., Ducasse, L. & Papavassiliou, G. C. Electronic properties of three- and low-dimensional semiconducting materials with Pb halide and Sn halide units. J. Phys. Condens. Matter 8, 1217 (1996). 

  28. Chem. Commun. M Zhang 50 11727 2014 10.1039/C4CC04973J Zhang, M., Yu, H., Lyu, M., Wang, Q., Yun, J.-H. & Wang, L. Composition-dependent photoluminescence intensity and prolonged recombination lifetime of perovskite CH3NH3PbBr3-xClx films. Chem. Commun. 50, 11727-11730 (2014). 

  29. Science W Nie 347 522 2015 10.1126/science.aaa0472 Nie, W., Tsai, H., Asadpour, R., Blancon, J.-C., Neukirch, A. J., Gupta, G., Crochet, J. J., Chhowalla, M., Tretiak, S., Alam, M. A., Wang, H. L. & Mohite, A. D. High-efficiency solution-processed perovskite solar cells with millimeter-scale grains. Science 347, 522-525 (2015). 

  30. J. Mater. Chem. A FK Aldibaja 3 9194 2015 10.1039/C4TA06198E Aldibaja, F. K., Badia, L., Mas-Marza, E., Sanchez, R. S., Barea, E. M. & Mora-Sero, I. Effect of different lead precursors on perovskite solar cell performance and stability. J. Mater. Chem. A 3, 9194-9200 (2015). 

  31. Nat. Photonics JH Heo 7 486 2013 10.1038/nphoton.2013.80 Heo, J. H., Im, S. H., Noh, J. H., Mandal, T. N., Lim, C.-S., Chang, J. A., Lee, Y. H., Kim, H.-J., Sarkar, A., Nazeeruddin, M. K., Gratzel, M. & Seok, S. I. Efficient inorganic-organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors. Nat. Photonics 7, 486-491 (2013). 

  32. Adv. Mater. HJ Snaith 19 3643 2007 10.1002/adma.200602085 Snaith, H. J. & Grätzel, M. Electron and Hole Transport through Mesoporous TiO2 Infiltrated with Spiro-MeOTAD. Adv. Mater. 19, 3643-3647 (2007). 

  33. ACS Nano T Leijtens 6 1455 2012 10.1021/nn204296b Leijtens, T., Ding, I.-K., Giovenzana, T., Bloking, J. T., McGehee, M. D. & Sellinger, A. Hole transport materials with low glass transition temperatures and high solubility for application in solid-state dye-sensitized solar cells. ACS Nano 6, 1455-1462 (2012). 

  34. J. Appl. Phys. D Poplavskyy 93 341 2003 10.1063/1.1525866 Poplavskyy, D. & Nelson, J. Nondispersive hole transport in amorphous films of methoxy-spirofluorene-arylamine organic compound. J. Appl. Phys. 93, 341 (2003). 

LOADING...

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로