$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Selection of slat separation-to-width ratio of brise-soleil shading considering energy savings, CO2 emissions and visual comfort – a case study in Qatar

Energy and buildings, v.165, 2018년, pp.440 - 450  

Ouahrani, Djamel (Corresponding author.) ,  Al Touma, Albert

Abstract AI-Helper 아이콘AI-Helper

Abstract The addition of fixed external shading devices to glazed surfaces reduces the space loads and sensations of visual discomfort caused by excessive day-lighting. The slat-to-slat separation distance of the brise-soleil blinds is crucial in controlling the beam and diffuse solar radiation pen...

주제어

참고문헌 (44)

  1. Ghiaus 26 2004 A Handbook for Intelligent Building Energy and environmental issues of smart buildings 

  2. Energy Build. Yoon 75 84 2014 10.1016/j.enbuild.2014.02.002 Detailed heat balance analysis of the thermal load variations depending on the blind location and glazing type 

  3. Al Touma 2016 Proceedings of the 2nd ASHRAE International Conference on Efficient Building Design: Materials and HVAC Equipment Technologies Energy savings of windows with shutters in hot and humid climates 

  4. Energy Build. Su 42 2 198 2010 10.1016/j.enbuild.2009.08.015 Environmental performance optimization of window-wall ratio for different window type in hot summer and cold winter zone in China based on life cycle assessment 

  5. Energy Convers. Manage. Chow 50 8 1884 2009 10.1016/j.enconman.2009.04.028 Thermal performance of natural airflow window in subtropical and temperate climate zones-a comparative study 

  6. Energy Build. Wei 42 1 111 2010 10.1016/j.enbuild.2009.07.018 Energy performance of a dual airflow window under different climates 

  7. HVAC&R Res. Gosselin 14 3 359 2008 10.1080/10789669.2008.10391014 A dual airflow window for indoor air quality improvement and energy conservation in buildings 

  8. Energy Al Touma 115 169 2016 10.1016/j.energy.2016.09.020 Solar chimney integrated with passive evaporative cooler applied on glazing surfaces 

  9. Energy Build. Li 102 129 2015 10.1016/j.enbuild.2015.04.025 Experimental and theoretical study on the effect of window films on building energy consumption 

  10. Energy Build. Fathoni 128 413 2016 10.1016/j.enbuild.2016.06.034 Energy analysis of the daylighting from a double-pane glazed window with enclosed horizontal slats in the tropics 

  11. Build. Environ. Shen 78 155 2014 10.1016/j.buildenv.2014.04.028 Energy and visual comfort analysis of lighting and daylight control strategies 

  12. Sol. Energy Chan 98 241 2013 10.1016/j.solener.2013.10.005 Efficient venetian blind control strategies considering daylight utilization and glare protection 

  13. Sol. Energy Reinhart 77 1 15 2004 10.1016/j.solener.2004.04.003 Lightswitch-2002: a model for manual and automated control of electric lighting and blinds 

  14. Energy Build. Lee 38 7 914 2006 10.1016/j.enbuild.2006.03.019 The New York Times Headquarters daylighting mockup: monitored performance of the daylighting control system 

  15. Sol. Energy Tzempelikos 82 12 1172 2008 10.1016/j.solener.2008.05.014 The impact of venetian blind geometry and tilt angle on view, direct light transmission and interior illuminance 

  16. Build. Environ. Koo 45 6 1508 2010 10.1016/j.buildenv.2009.12.014 Automated blind control to maximize the benefits of daylight in buildings 

  17. Energy Build. Oh 55 728 2012 10.1016/j.enbuild.2012.09.019 Automated control strategies of inside slat-type blind considering visual comfort and building energy performance 

  18. Lee Vol. 6 351 2013 Cooling load reduction effect and its mechanism in between-glass cavity and venetian blind operation during the summer season 

  19. Energy Build. Saelens 60 286 2013 10.1016/j.enbuild.2012.10.056 Assessment of approaches for modeling louver shading devices in building energy simulation programs 

  20. Energy Build. Li 113 189 2016 10.1016/j.enbuild.2015.12.040 Performance evaluation of building integrated solar thermal shading system: building energy consumption and daylight provision 

  21. Energy Build. Wienold 38 7 743 2006 10.1016/j.enbuild.2006.03.017 Evaluation methods and development of a new glare prediction model for daylight environments with the use of CCD cameras 

  22. Energy Build. Fasi 108 307 2015 10.1016/j.enbuild.2015.09.024 Energy performance of windows in office buildings considering daylight integration and visual comfort in hot climates 

  23. Energy Build. Mofidi 129 247 2016 10.1016/j.enbuild.2016.07.059 Integrated optimization of energy costs and occupants’ productivity in commercial buildings 

  24. Int. J. Electr. Energy Navada 1 1 18 2013 10.12720/ijoee.1.1.18-22 A study on daylight integration with thermal comfort for energy conservation in a general office 

  25. L. Bellia, A. Cesarano, G.F. Iuliano, G. Spada, (2008). Daylight glare: a review of discomfort indexes. 

  26. Uiuc 2005 EnergyPlus Engineering Reference: The Reference to EnergyPlus Calculations 

  27. Sol. Energy Osterhaus 79 2 140 2005 10.1016/j.solener.2004.11.011 Discomfort glare assessment and prevention for daylight applications in office environments 

  28. Sol. Energy Chan 98 241 2013 10.1016/j.solener.2013.10.005 Efficient venetian blind control strategies considering daylight utilization and glare protection 

  29. Energy Build. Hirning 70 427 2014 10.1016/j.enbuild.2013.11.053 Discomfort glare in open plan green buildings 

  30. 2009 ASHRAE Fundamentals Handbook Chapter 19 energy estimating and modeling methods 

  31. Energy Build. Al Touma 2017 Shading and day-lighting controls energy savings in offices with fully-glazed facades in hot climates 

  32. ISO 2003 15099: 2003-Thermal Performance of Windows, Doors, and Shading Devices-Detailed Calculations 

  33. Simmler 1996 Solar-thermal window blind model for DOE-2 

  34. Online Resource: http://weather.whiteboxtechnologies.com/. 

  35. ASHRAE. Standard 62.1 - ventilation for acceptable indoor air quality. 2004. 

  36. ASHRAE/IESNA Stand. 90 1 1999 Energy standard for buildings except low-rise residential buildings 

  37. DOE 2010 6.0 Input/Output Reference: The Encyclopedic Reference to EnergyPlus Input and Output 

  38. Appl. Ergon. Hopkinson 3 4 206 1972 10.1016/0003-6870(72)90102-0 Glare from daylighting in buildings 

  39. Sol. Energy Perez-Astudillo 119 169 2015 10.1016/j.solener.2015.06.045 Variability of measured Global Horizontal Irradiation throughout Qatar 

  40. Renew. Energy Bachour 71 32 2014 10.1016/j.renene.2014.05.005 Ground measurements of global horizontal irradiation in Doha, Qatar 

  41. Kahramaa, Qatar General Electricity & Water Corporation. Online Resource: http://www.km.com.qa/Pages/default.aspx (Accessed on May 31, 2017). 

  42. B. Petroleum, BP statistical review of world energy. (2016). 

  43. Energy Build. Ayoub 84 55 2014 10.1016/j.enbuild.2014.07.050 Energy consumption and conservation practices in Qatar-a case study of a hotel building 

  44. Environment Agency (UK). CRC energy efficiency scheme - guidance for participants in Phase 1 (2010/11-2013/14). 

관련 콘텐츠

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로