$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Simultaneous determination of isoproterenol, acetaminophen, folic acid, propranolol and caffeine using a sensor platform based on carbon black, graphene oxide, copper nanoparticles and PEDOT:PSS

Talanta, v.183, 2018년, pp.329 - 338  

Wong, Ademar (Corresponding author.) ,  Santos, Anderson Martin ,  Silva, Tiago Almeida ,  Fatibello-Filho, Orlando

Abstract AI-Helper 아이콘AI-Helper

Abstract We explored the use of carbon black (CB), graphene oxide (GO), copper nanoparticles (CuNPs) and poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS) as electrode materials for the simultaneous determination of isoproterenol, acetaminophen, folic acid, propranolol and caffein...

주제어

참고문헌 (68)

  1. Gogotsi 2013 Carbon Nanomaterials 

  2. Nature Stankovich 442 7100 282 2006 10.1038/nature04969 Graphene-based composite materials 

  3. Nat. Nanotechnol. Park 4 4 217 2009 10.1038/nnano.2009.58 Chemical methods for the production of graphenes 

  4. ACS Nano Qu 4 3 1321 2010 10.1021/nn901850u Nitrogen-doped graphene as efficient metal-free electrocatalyst for oxygen reduction in fuel cells 

  5. Nanoscale Karimi 7 16 6909 2015 10.1039/C4NR07586B Graphene based enzymatic bioelectrodes and biofuel cells 

  6. Nano Lett. Liu 10 12 4863 2010 10.1021/nl102661q Graphene-based supercapacitor with an ultrahigh energy density 

  7. TrAC Trends Anal. Chem. Bahadır 76 1 2016 10.1016/j.trac.2015.07.008 Applications of graphene in electrochemical sensing and biosensing 

  8. Biosens. Bioelectron. Janegitz 89 224 2017 10.1016/j.bios.2016.03.026 The application of graphene for in vitro and in vivo electrochemical biosensing 

  9. Anal. Chem. Li 83 16 6426 2011 10.1021/ac200939g Facile patterning of reduced graphene oxide film into microelectrode array for highly sensitive sensing 

  10. Anal. Chem. Valentini 84 13 5823 2012 10.1021/ac301285e Oxidized graphene in ionic liquids for assembling chemically modified electrodes: a structural and electrochemical characterization study 

  11. Anal. Chem. Kim 89 1 232 2017 10.1021/acs.analchem.6b04248 Emerging approaches for graphene oxide biosensor 

  12. Electrochim. Acta Silva 119 0 114 2014 10.1016/j.electacta.2013.12.024 Electrochemical behaviour of vertically aligned carbon nanotubes and graphene oxide nanocomposite as electrode material 

  13. Analyst Silva 139 11 2832 2014 10.1039/c4an00111g Differential pulse adsorptive stripping voltammetric determination of nanomolar levels of atorvastatin calcium in pharmaceutical and biological samples using a vertically aligned carbon nanotube/graphene oxide electrode 

  14. ACS Appl. Mater. Interfaces Silva 6 23 21086 2014 10.1021/am505928j Electrochemical performance of porous diamond-like carbon electrodes for sensing hormones, neurotransmitters, and endocrine disruptors 

  15. J. Mater. Chem. B May 4 34 5737 2016 10.1039/C6TB01774F Diamond-coated 'black silicon' as a promising material for high-surface-area electrochemical electrodes and antibacterial surfaces 

  16. Sens. Actuators B Chen 161 1 648 2012 10.1016/j.snb.2011.10.085 A high performance electrochemical sensor for acetaminophen based on single-walled carbon nanotube-graphene nanosheet hybrid films 

  17. J. Electroanal. Chem. Wong 757 250 2015 10.1016/j.jelechem.2015.10.001 Development and application of an electrochemical sensor modified with multi-walled carbon nanotubes and graphene oxide for the sensitive and selective detection of tetracycline 

  18. Biosens. Bioelectron. Mani 41 309 2013 10.1016/j.bios.2012.08.045 Direct electrochemistry of glucose oxidase at electrochemically reduced graphene oxide-multiwalled carbon nanotubes hybrid material modified electrode for glucose biosensor 

  19. J. Nanomater. Silva 2017 14 2017 10.1155/2017/4571614 Electrochemical biosensors based on nanostructured carbon black: a review 

  20. Carbon Atkins 3 3 299 1965 10.1016/0008-6223(65)90064-3 Porosity and surface area of carbon black 

  21. Electrochim. Acta Vicentini 157 125 2015 10.1016/j.electacta.2014.11.204 Imparting improvements in electrochemical sensors: evaluation of different carbon blacks that give rise to significant improvement in the performance of electroanalytical sensing platforms 

  22. Int. J. Hydrog. Energy Wang 35 19 10087 2010 10.1016/j.ijhydene.2010.07.172 Electrocatalysis of carbon black- or activated carbon nanotubes-supported Pd-Ag towards methanol oxidation in alkaline media 

  23. Appl. Catal. B Wang 99 1 229 2010 10.1016/j.apcatb.2010.06.024 Electrocatalysis of Pd-Co supported on carbon black or ball-milled carbon nanotubes towards methanol oxidation in alkaline media 

  24. Adv. Mater. Liu 25 47 6879 2013 10.1002/adma.201302786 High-performance oxygen reduction electrocatalysts based on cheap carbon black, nitrogen, and trace iron 

  25. Chem. Commun. Chen 46 40 7492 2010 10.1039/c0cc02048f Nano-sized TiN on carbon black as an efficient electrocatalyst for the oxygen reduction reaction prepared using an mpg-C3N4 template 

  26. Sens. Actuators B Vicentini 227 610 2016 10.1016/j.snb.2015.12.094 Nanostructured carbon black for simultaneous sensing in biological fluids 

  27. Int. J. Electrochem. Sci. Lu 10 2 1646 2015 10.1016/S1452-3981(23)05100-3 Conductive carbon black-graphene composite for sensitive sensing of rutin 

  28. Biosens. Bioelectron. Jiang 54 273 2014 10.1016/j.bios.2013.11.005 Enhanced non-enzymatic glucose sensing based on copper nanoparticles decorated nitrogen-doped graphene 

  29. J. Solid State Electrochem. Siao 15 6 1121 2011 10.1007/s10008-010-1174-x Electrochemical study of PEDOT-PSS-MDB-modified electrode and its electrocatalytic sensing of hydrogen peroxide 

  30. J. Mater. Chem. A Huang 2 20 7229 2014 10.1039/C4TA00309H A high performance electrochemical sensor for acetaminophen based on a rGO-PEDOT nanotube composite modified electrode 

  31. Electrochim. Acta Prathish 114 533 2013 10.1016/j.electacta.2013.10.080 Chemically modified graphene and nitrogen-doped graphene: electrochemical characterisation and sensing applications 

  32. J. Electroanal. Chem. Wong 799 Supplement C S547 2017 10.1016/j.jelechem.2017.06.055 Determination of piroxicam and nimesulide using an electrochemical sensor based on reduced graphene oxide and PEDOT:PSS 

  33. Int. J. Pharm. Arteaga de Murphy 233 1 29 2002 10.1016/S0378-5173(01)00922-X 99mTc-glucarate for detection of isoproterenol-induced myocardial infarction in rats 

  34. Microchim. Acta Wang 184 8 2999 2017 10.1007/s00604-017-2295-z A voltammetric study on the interaction between isoproterenol and cardiomyocyte DNA by using a glassy carbon electrode modified with carbon nanotubes, polyaniline and gold nanoparticles 

  35. Sens. Actuators B Luo 188 Supplement C S909 2013 10.1016/j.snb.2013.07.088 A novel electrochemical sensor for paracetamol based on molecularly imprinted polymeric micelles 

  36. Biosens. Bioelectron. Teng 71 Supplement C S137 2015 10.1016/j.bios.2015.04.037 Electrochemical sensor for paracetamol recognition and detection based on catalytic and imprinted composite film 

  37. Mater. Sci. Eng. C Arvand 33 6 3474 2013 10.1016/j.msec.2013.04.037 A simple and efficient electrochemical sensor for folic acid determination in human blood plasma based on gold nanoparticles-modified carbon paste electrode 

  38. Biosens. Bioelectron. Kalimuthu 24 12 3575 2009 10.1016/j.bios.2009.05.017 Selective electrochemical sensor for folic acid at physiological pH using ultrathin electropolymerized film of functionalized thiadiazole modified glassy carbon electrode 

  39. Talanta Chen 105 Supplement C S250 2013 10.1016/j.talanta.2012.12.035 A chiral electrochemical sensor for propranolol based on multi-walled carbon nanotubes/ionic liquids nanocomposite 

  40. J. Braz. Chem. Soc. Baranowska 22 1601 2011 10.1590/S0103-50532011000800025 Electrochemical behavior of propranolol and its major metabolites, 4′-hydroxypropranolol and 4′-hydroxypropranolol sulfate, on glassy carbon electrode 

  41. Food Chem. Carolina Torres 149 Supplement C S215 2014 10.1016/j.foodchem.2013.10.114 Simple electrochemical sensor for caffeine based on carbon and nafion-modified carbon electrodes 

  42. J. Solid State Electrochem. Kan 16 10 3207 2012 10.1007/s10008-012-1760-1 A novel electrochemical sensor based on molecularly imprinted polymers for caffeine recognition and detection 

  43. Curr. Med. Res. Opin. Ali 23 4 841 2007 10.1185/030079907X182239 Efficacy of a paracetamol and caffeine combination in the treatment of the key symptoms of primary dysmenorrhoea 

  44. 10.1016/S0278-2391(97)90212-3 I. Shami, Quantitative measurement of the effects of caffeine and propranolol on surgeon hand tremor, J. Oral Maxillofac. Surg., 55(11), p. 1363. 

  45. Jpn. Heart J. Morita 15 6 579 1974 10.1536/ihj.15.579 Effects of isoproterenol, propranolol and artificial pacing on hemodynamics and energy liberation of the infarcted heart in dogs 

  46. J. Cryst. Growth Laube 233 1-2 367 2001 10.1016/S0022-0248(01)01547-0 Laser-probe-based investigation of the evolution of particle size distributions of calcium oxalate particles formed in artificial urines 

  47. Anal. Chim. Acta Medeiros 797 30 2013 10.1016/j.aca.2013.08.018 Amorphous carbon nitride as an alternative electrode material in electroanalysis: simultaneous determination of dopamine and ascorbic acid 

  48. Talanta Parham 55 2 255 2001 10.1016/S0039-9140(01)00416-7 Determination of isosorbide dinitrate in arterial plasma, synthetic serum and pharmaceutical formulations by linear sweep voltammetry on a gold electrode 

  49. Sens. Actuators B Wong 231 183 2016 10.1016/j.snb.2016.03.014 Square-wave voltammetric determination of clindamycin using a glassy carbon electrode modified with graphene oxide and gold nanoparticles within a crosslinked chitosan film 

  50. Talanta Wong 161 333 2016 10.1016/j.talanta.2016.08.035 Electrochemical sensor based on graphene oxide and ionic liquid for ofloxacin determination at nanomolar levels 

  51. J. Mater. Chem. B Hui 3 4 556 2015 10.1039/C4TB01831A Graphene oxide doped poly(3,4-ethylenedioxythiophene) modified with copper nanoparticles for high performance nonenzymatic sensing of glucose 

  52. Sens. Actuators B Pedrosa 140 1 92 2009 10.1016/j.snb.2009.04.001 Copper nanoparticles and carbon nanotubes-based electrochemical sensing system for fast identification of tricresyl-phosphate in aqueous samples and air 

  53. JESTECH Soltani-kordshuli 19 3 1216 2016 Graphene-doped PEDOT: PSSnanocomposite thin films fabricated by conventional and substrate vibration-assisted spray coating (SVASC) 

  54. Bard 2001 Electrochemical Methods: Fundamentals and Applications 

  55. A.M.O. Brett, C.M.A. Brett, Electroquímica: Princípios, Métodos e Aplicações, in: O.U.P. Inc (Ed.), New York, 1993. 

  56. Drug Test. Anal. Ensafi 3 5 325 2011 10.1002/dta.232 Voltammetric determination of isoproterenol using multiwall carbon nanotubes-ionic liquid paste electrode 

  57. Food Chem. Tefera 210 156 2016 10.1016/j.foodchem.2016.04.106 Simultaneous determination of caffeine and paracetamol by square wave voltammetry at poly(4-amino-3-hydroxynaphthalene sulfonic acid)-modified glassy carbon electrode 

  58. J. Electroanal. Chem. de Holanda 772 9 2016 10.1016/j.jelechem.2016.04.021 Multi-walled carbon nanotubes-cobalt phthalocyanine modified electrode for electroanalytical determination of acetaminophen 

  59. Sens. Actuators B Kalambate 213 285 2015 10.1016/j.snb.2015.02.090 Simultaneous voltammetric determination of paracetamol and domperidone based on a graphene/platinum nanoparticles/nafion composite modified glassy carbon electrode 

  60. Electroanalysis Silva 29 3 907 2017 10.1002/elan.201600665 Simultaneous voltammetric determination of paracetamol, codeine and caffeine on diamond-like carbon porous electrodes 

  61. Microchim. Acta Wei 152 3 285 2006 10.1007/s00604-005-0437-1 Voltammetric determination of folic acid with a multi-walled carbon nanotube-modified gold electrode 

  62. Sens. Actuators B Xiao 134 2 895 2008 10.1016/j.snb.2008.06.037 Single-walled carbon nanotube-ionic liquid paste electrode for the sensitive voltammetric determination of folic acid 

  63. Electrochim. Acta Lourencao 143 398 2014 10.1016/j.electacta.2014.08.008 Voltammetric studies of propranolol and hydrochlorothiazide oxidation in standard and synthetic biological fluids using a nitrogen-containing tetrahedral amorphous carbon (ta-C:N) electrode 

  64. Electrochim. Acta Shadjou 58 336 2011 10.1016/j.electacta.2011.09.055 Electrochemical behavior of atenolol, carvedilol and propranolol on copper-oxide nanoparticles 

  65. Measurement Karimi-Maleh 51 91 2014 10.1016/j.measurement.2014.01.028 A sensitive nanocomposite-based electrochemical sensor for voltammetric simultaneous determination of isoproterenol, acetaminophen and tryptophan 

  66. J. Braz. Chem. Soc. Mazloum-Ardakani 25 9 1630 2014 Simultaneous determination of isoproterenol, acetaminophen and folic acid using nanostructured electrochemical sensor based on benzofuran derivative and carbon nanotubes 

  67. Sens. Actuators B Amiri-Aref 192 Supplement C S634 2014 10.1016/j.snb.2013.11.006 A highly sensitive electrochemical sensor for simultaneous voltammetric determination of noradrenaline, acetaminophen, xanthine and caffeine based on a flavonoid nanostructured modified glassy carbon electrode 

  68. Sens. Actuators B Mazloum-Ardakani 171-172 Supplement C S380 2012 10.1016/j.snb.2012.04.071 Electrochemical sensor for simultaneous determination of norepinephrine, paracetamol and folic acid by a nanostructured mesoporous material 

관련 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로