$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Enhancing the performance of microbial fuel cells (MFCs) with nitrophenyl modified carbon nanotubes-based anodes

Applied surface science, v.492, 2019년, pp.661 - 668  

Iftimie, Sorina (Corresponding author.) ,  Dumitru, Anca

Abstract AI-Helper 아이콘AI-Helper

Abstract Modification of carbon based-nanomaterials has been proven to be efficient for improving the MFCs performance, since the anode material significantly impacts the biofilm formation and the electron transfer between the microorganism and the electron acceptor. Surface treatment or functional...

주제어

참고문헌 (50)

  1. Renew. Sust. Energ. Rev. Hindatu 73 236 2017 10.1016/j.rser.2017.01.138 Mini-review: anode modification for improved performance of microbial fuel cell 

  2. Biosens. Bioelectron. Sonawane 90 558 2017 10.1016/j.bios.2016.10.014 Recent advances in the development and utilization of modern anode materials for high performance microbial fuel cells 

  3. Biosens. Bioelectron. Yazdi 85 536 2016 10.1016/j.bios.2016.05.033 Carbon nanotube modification of microbial fuel cell electrodes 

  4. App. Physics Lett. Matsumoto 105 2014 10.1063/1.4894259 Carbon nanotube dispersed conductive network for microbial fuel cells 

  5. J. of Power Sources Tsai 194 199 2009 10.1016/j.jpowsour.2009.05.018 Microbial fuel cell performance of multiwall carbon nanotubes on carbon cloth as electrodes 

  6. Phys. Status Solidi A Dumitru 205 1484 2008 10.1002/pssa.200778136 Biofilm growth from wastewater on MWNTs and carbon aerogels 

  7. Water Sci. Technol. Thepsuparungsikul 69 1900 2014 10.2166/wst.2014.102 Different types of carbon nanotube-based anodes to improve microbial fuel cell performance 

  8. Carbon Sang 50 3 2012 10.1016/j.carbon.2011.08.011 Surface modifications for the effective dispersion of carbon nanotubes in solvents and polymer 

  9. J. of Power Sources Poh 176 70 2008 10.1016/j.jpowsour.2007.10.049 Citric acid functionalized carbon materials for fuel cell applications 

  10. Electrochim. Acta Dumitru 135 428 2014 10.1016/j.electacta.2014.04.123 Effect of different chemical modification of carbon nanotubes for the oxygen reduction reaction in alkaline media 

  11. Adv. Funct. Mater. Byon 23 1037 2013 10.1002/adfm.201200697 Role of oxygen functional groups in carbon nanotube/graphene freestanding electrodes for high performance Lithium batteries 

  12. Polymers Wang 9 220 2017 10.3390/polym9060220 Electrochemical polymerization of hydroquinone on graphite felt as a pseudocapacitive material for application in a microbial fuel cell 

  13. Bioresour. Technol. Saito 102 395 2011 10.1016/j.biortech.2010.05.063 Effect of nitrogen addition on the performance of microbial fuel cell anodes 

  14. Biosens. Bioelectron. Guo 47 184 2013 10.1016/j.bios.2013.02.051 Spontaneous modification of carbon surface with neutral red from its diazonium salts for bioelectrochemical systems 

  15. Rom. J. of Phys. Dumitru 63 605 2018 Influence of nitrogen environment on the performance of conducting polymers/CNTs nanocomposites modified anodes for microbial fuel cells (MFCs) 

  16. Colloids Surf. B Xu 48 84 2006 10.1016/j.colsurfb.2006.01.012 Adhesion forces between functionalized latex microspheres and protein-coated surfaces evaluated using colloid probe atomic force microscopy 

  17. Electrochem. Commun. Cheng 9 492 2007 10.1016/j.elecom.2006.10.023 Ammonia treatment of carbon cloth anodes to enhance power generation of microbial fuel cells 

  18. J. of Power Sources Ma 307 105 2016 10.1016/j.jpowsour.2015.12.109 Municipal sludge-derived carbon anode with nitrogen- and oxygen-containing functional groups for high-performance microbial fuel cells 

  19. Electrochem. Commun. Ci 14 71 2012 10.1016/j.elecom.2011.11.006 Decorating anode with bamboo-like nitrogen-doped carbon nanotubes for microbial fuel cells 

  20. Nano Lett. Carrero-Sanchez 6 1609 2006 10.1021/nl060548p Biocompatibility and toxicological studies of carbon nanotubes doped with nitrogen 

  21. Langmuir Chen 16 2014 2000 10.1021/la990814x Electrochemical and spectroscopic studies of Nitrophenyl moieties immobilized on gold nanoparticles 

  22. Electroanalysis Downard 12 1085 2000 10.1002/1521-4109(200010)12:14<1085::AID-ELAN1085>3.0.CO;2-A Electrochemically assisted covalent modification of carbon electrodes 

  23. Chem. Soc. Rev. Pinson 34 429 2005 10.1039/b406228k Attachment of organic layers to conductive or semiconductive surfaces by reduction of diazonium salts 

  24. Carbon Assresahegn 92 362 2015 10.1016/j.carbon.2015.05.030 Advances on the use of diazonium chemistry for functionalization of materials used in energy storage systems 

  25. Nanotechnology Chakraborty 20 155704 2009 10.1088/0957-4484/20/15/155704 The electronic fine structure of 4-nitrophenyl functionalized single-walled carbon nanotubes 

  26. Int. J. Electrochem. Sci. Abiman 3 104 2008 10.1016/S1452-3981(23)15430-7 Investigating the mechanism for the covalent chemical modification of multiwalled carbon nanotubes using aryl diazonium salts 

  27. Langmuir Toupin 24 1910 2008 10.1021/la702556n Spontaneous functionalization of carbon black by reaction with 4-nitrophenyldiazonium cations 

  28. Environ. Sci. Technol. Fan 42 8101 2008 10.1021/es801229j Quantification of the internal resistance distribution of microbial fuel cells 

  29. Carbon Cai 50 4655 2012 10.1016/j.carbon.2012.05.055 An improved method for functionalisation of carbon nanotube spun yarns with aryldiazonium compounds 

  30. J. Alloys Compd. Stobinski 501 77 2010 10.1016/j.jallcom.2010.04.032 Multiwall carbon nanotubes purification and oxidation by nitric acid studied by the FTIR and electron spectroscopy methods 

  31. Appl. Surf. Sci. Chun 257 2401 2011 10.1016/j.apsusc.2010.09.110 The influence of treatment duration on multi-walled carbon nanotubes functionalized by H2SO4/HNO3 oxidation 

  32. Appl. Surf. Sci. Brisset 29 337 2015 10.1016/j.apsusc.2014.12.060 Surface functionalization of cyclic olefin copolymer with aryldiazonium salts: a covalent grafting method 

  33. Electroanal Gui 22 1824 2010 10.1002/elan.201000164 A comparative study of electrochemical reduction of 4-nitrophenyl covalently grafted on gold and carbon 

  34. Chem Mat Adenier 17 491 2005 10.1021/cm0490625 Grafting of nitrophenyl groups on carbon and metallic surfaces without electrochemical induction 

  35. Nano Lett. Dresselhaus 10 751 2010 10.1021/nl904286r Perspectives on carbon nanotubes and graphene Raman spectroscopy 

  36. Adv. Nat. Sci. Nanosci. Nanotechnol. Le 4 035017 2013 10.1088/2043-6262/4/3/035017 Surface modification and functionalization of carbon nanotube with some organic compounds 

  37. Phys. Rev. B Kim 76 2007 10.1103/PhysRevB.76.205426 Dependence of Raman spectra G′ band intensity on metallicity of single-wall carbon nanotubes 

  38. J. Phys.Chem. C Priya 12 332 2008 10.1021/jp0743830 Investigation of sodium dodecyl benzene sulphonate assisted dispersion and debundling of single wall carbon nanotubes 

  39. J. of Raman Spectroscopy Osswald 38 728 2007 10.1002/jrs.1686 Monitoring oxidation of multiwalled carbon nanotubes by Raman spectroscopy 

  40. Colloid Polym. Sci. Jeong 288 1 2010 10.1007/s00396-009-2127-8 Optimizing functionalization of multiwalled carbon nanotubes using sodium lignosulfonate 

  41. Diamond Related Mater Liang 13 69 2004 10.1016/j.diamond.2003.08.025 Synthesis and correlation study on the morphology and Raman spectra of CNx nanotubes by thermal decomposition of ferrocene/ethylenediamine 

  42. Phys. Rev. B Dillon 29 3482 1984 10.1103/PhysRevB.29.3482 Use of Raman-scattering to investigate disorder and crystallite formation in as-deposited and annealed carbon-films 

  43. Mater. Chem. and Phys. Chen 98 256 2006 10.1016/j.matchemphys.2005.09.017 Optimization of carbon nanotube powder growth using low pressure floating catalytic chemical vapor deposition 

  44. J. Phys. Chem. C Ganguly 115 17009 2011 10.1021/jp203741y Probing the thermal deoxygenation of graphene oxide using high-resolution in situ X-ray-based spectroscopies 

  45. Carbon Cuesta 32 1523 1994 10.1016/0008-6223(94)90148-1 Raman microprobe studies on carbon materials 

  46. J. Mater. Chem. Cuesta 8 2875 1998 10.1039/a805841e Comparative performance of X-ray diffraction and Raman microprobe techniques for the study of carbon materials 

  47. ChemPhysChem Heald 5 1794 2004 10.1002/cphc.200400369 Chemical derivatisation of multiwalled carbon nanotubes using diazonium salts 

  48. ChemPhysChem Wildgoose 6 352 2005 10.1002/cphc.200400403 Graphite powder and multiwalled carbon nanotubes chemically modified with 4-nitrobenzylamine 

  49. J. Solid State Electrochem. Pandurangappa 12 1411 2008 10.1007/s10008-007-0470-6 Derivatization and characterization of functionalized carbon powder via diazonium salt reduction 

  50. Carbon Pandurangappa 47 2186 2009 10.1016/j.carbon.2009.03.068 Functionalization of glassy carbon spheres by ball milling of aryl diazonium salts 

관련 콘텐츠

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로