$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Physical Properties, Carotenoids and Antioxidant Capacity of Carrot (Daucus carota L.) Peel as Influenced by Different Drying Treatments

International journal of food engineering, v.14 no.3, 2018년, pp.20170042 -   

Lau, Wai Keong (School of Environmental and Life Sciences, University of Newcastle, Ourimbah, NSW 2258, Australia) ,  Van Chuyen, Hoang (School of Environmental and Life Sciences, University of Newcastle, Ourimbah, NSW 2258, Australia) ,  Vuong, Quan V.

Abstract

AbstractCarrot peel generated from the juice factories is considered as waste and it can be potential for further recovery of carotenoids. Drying treatment is essential to minimise degradation of carotenoids and ease transportation as well as storage of the peel for further processing. This study aimed to determine the impact of different drying conditions on its physicochemical and antioxidant properties to propose the most suitable conditions for drying carrot peel for further recovery of carotenoids. Drying conditions were found to significantly affect retention of total carotenoids, β-carotene, lutein and lycopene as well as antioxidant capacity in carrot peel. Optimal conditions for hot-air drying were at 40 °C for 3.5 h; vacuum drying were at 60 °C, −60 kPa for 4 h; dehumidification drying was at 50 °C for 2.5 h with relative humidity (RH) of 16-21 %; and microwave drying was at 600 W for 7 min. In comparison with freeze drying (control) and other three different drying methods at each optimal conditions, dehumidification drying at 50 °C with RH of 16-21 % was the most effective method as it retained high levels of total carotenoids (2.75 mg/g DW), β-carotene (1.57 mg/g DW), lutein (0.17 mg/g DW) and lycopene (0.78 mg/g DW). Dried carrot peel also had potent antioxidant properties (ABTS: 4.71 and CUPRAC: 19 mM TE/g DW). Therefore, these conditions are recommended for drying carrot peel for further recovery of carotenoids.

주제어

참고문헌 (39)

  1. Food and Agriculture Organization UN [Internet]. FAOSTAT database collection [updated 2015]. Available at: http://faostat3.fao.org/browse/Q/QC/E. Accessed: 8 June 2016. 

  2. 10.1021/acs.jafc.5b02640 Kamiloglu S, Capanoglu E, Bilen F, Gonzales G, Grootaert C, Van de Wiele T, et al. Bioaccessibility of polyphenols from plant-processing byproducts of black carrot (Daucus carota L.). J Agric Food Chem. 2016;64(12):2450-58.10.1021/acs.jafc.5b0264026262673 

  3. 10.1007/s13197-011-0310-7 Sharma KD, Karki S, Thakur NS, Attri S. Chemical composition, functional properties and processing of carrot: A review. J Food Sci Technol. 2012;49:22-32.10.1007/s13197-011-0310-723572822 

  4. 10.3945/ajcn.2010.28674G Tang G. Bioconversion of dietary provitamin A carotenoids to vitamin A in humans. Am J Clin Nutr. 2010;91:1468-73.10.3945/ajcn.2010.28674G 

  5. 10.1080/10408390802565889 Boon CS, McClements DJ, Weiss J, Decker EA. Factors influencing the chemical stability of carotenoids in foods. Crit Rev Food Sci Nutr. 2010;50:515-32.10.1080/1040839080256588920544442 

  6. 10.1016/j.ultsonch.2015.11.026 Chen ZG, Guo XY, Wu T. A novel dehydration technique for carrot slices implementing ultrasound and vacuum drying methods. Ultrason Sonochem. 2016;30:28-34.10.1016/j.ultsonch.2015.11.02626703199 

  7. 10.1016/S0963-9969(98)00070-2 Lin TM, Durance TD, Scaman CH. Characterization of vacuum microwave, air and freeze dried carrot slices. Food Res Int. 1998;31:111-17.10.1016/S0963-9969(98)00070-2 

  8. 10.1080/10408398.2015.1045969 Kamiloglu S, Toydemir G, Boyacioglu D, Beekwilder J, Hall R, Capanoglu E. A review on the effect of drying on antioxidant potential of fruits and vegetables. Crit Rev Food Sci Nutr. 2016;56(sup1):S110-S29. 

  9. Phoungchandang S, Wongwatanyoo J. Desorption isotherms and drying characteristics of carrot using tray and heat pump-assisted dehumidified drying. KKU Res J. 2010;15:171-86. 

  10. 10.1016/j.jfoodeng.2010.01.016 Kha TC, Nguyen MH, Roach PD. Effects of spray drying conditions on the physicochemical and antioxidant properties of the gac (Momordica cochinchinensis) fruit aril powder. J Food Eng. 2010;98:382-92. 

  11. 10.1016/j.jfoodeng.2012.10.021 Kha TC, Nguyen MH, Roach PD, Stathopoulus CE. Effects of gac aril microwave processing conditions on oil extraction efficiency, and β-carotene and lycopene contents. J Food Eng. 2013;117:486-91.10.1016/j.jfoodeng.2012.10.021 

  12. 10.1111/ijfs.12618 Vuong QV, Hirun S, Chuen TL, Goldsmith CD, Murchie S, Bowyer MC, et al. Antioxidant and anticancer capacity of saponin-enriched Carica papaya leaf extracts. Int J Food Sci Technol. 2015;50:169-77.10.1111/ijfs.12618 

  13. 10.1016/j.cep.2009.12.005 Zielinska M, Markowski M. Air drying characteristics and moisture diffusivity of carrots. Chem Eng Process. 2010;49:212-18.10.1016/j.cep.2009.12.005 

  14. 10.1111/jfpp.12290 Demiray E, Tulek Y. Color degradation kinetics of carrot (Daucus carota L.) slices during hot air drying. J Food Process Preserv. 2014;39:800-05. 

  15. 10.1111/j.1365-2621.2012.03025.x Yemis O, Bakkalbasi E, Artik N. Changes in pigment profile and surface colour of fig (Ficus carica L.) during drying. Int J Food Sci Technol. 2012;47(8):1710-19.10.1111/j.1365-2621.2012.03025.x 

  16. 10.1007/s11130-013-0369-6 Fratianni A, Albanese D, Mignogna R, Cinquanta L, Gianfranco P, Di Matteo M. Degradation of carotenoids in apricot (Prunus armeniaca L.) during drying process. Plant Foods Hum Nutr. 2013;68:241-46.10.1007/s11130-013-0369-623807280 

  17. 10.1016/j.jfoodeng.2008.10.034 Bechoff A, Dufour D, Dhuique-Mayer C. Effect of hot air, solar and sun drying treatments on provitamin a retention in orange-fleshed sweet potato. J Food Eng. 2009;2:164-71. 

  18. 10.1016/j.foodchem.2013.06.042 Chong CH, Law CL, Figiel A, Wojdylo A, Oziemblowski M. Color, phenolic content, and antioxidant capacity of some fruits dehydrated by a combination of different methods. Food Chem. 2013;141:3889-96.10.1016/j.foodchem.2013.06.04223993562 

  19. 10.1016/j.lwt.2012.06.001 Demiray E, Tulek Y, Yilmaz Y. Degradation kinetics of lycopene, β-carotene, and ascorbic acid in tomatoes during hot-air drying. LWT Food Sci Technol. 2013;50:172-76.10.1016/j.lwt.2012.06.001 

  20. 10.1002/jsfa.7918 Chuyen H, Roach P, Golding J, Parks S, Nguyen M. Effects of four different drying methods on the carotenoid composition and antioxidant capacity of dried Gac peel. J Sci Food Agric. 2016;97:1656-62.27435184 

  21. 10.1016/j.foodchem.2011.04.045 Muller L, Frohlich K, Bohm V. Comparative antioxidant activities of carotenoids measured by ferric reducing antioxidant power (FRAP), ABTS bleaching assay (αTEAC), DPPH assay and peroxyl radical scavenging assay. Food Chem. 2011;129(1):139-48.10.1016/j.foodchem.2011.04.045 

  22. Celen S, Kahveci K, Akyol U, Moralar A. Drying behaviour of tomato slices under vacuum conditions. Thermal Eng. 2013;1:58-65. 

  23. 10.1007/s11947-015-1608-7 Xu S, Pegg RB, Kerr WL. Physical and chemical properties of vacuum belt dried tomato powders. Food Bioprocess Technol. 2016;9:91-100.10.1007/s11947-015-1608-7 

  24. 10.4236/ajac.2015.65037 Al-Fartosy AJ, Abdulwahid AA. Antioxidant activity of anthocyanins extracted from Iraqi Iresine Herbstii L. flowers after drying and freezing. Am J Anal Chem. 2015;6:382-94.10.4236/ajac.2015.65037 

  25. 10.1515/1556-3758.1634 Parmar I, Chandi G, Gupta K, Gill B. Effect of drying on degradation kinetics of carotenoids and color of tomato pulp. Int J Food Eng. 2012;8(3):10. 

  26. 10.1016/j.foodchem.2008.05.001 Muratore G, Rizzo V, Licciardello F, Maccarone E. Partial dehydration of cherry tomato at different temperature, and nutritional quality of the products. Food Chem. 2008;111:887-91.10.1016/j.foodchem.2008.05.001 

  27. 10.1080/07373937.2010.503332 Ong SP, Law CL. Drying kinetics and antioxidant phytochemicals retention of salak fruit under different drying and pretreatment conditions. Drying Technol. 2011;29:429-41.10.1080/07373937.2010.503332 

  28. 10.1002/(SICI)1097-0010(199904)79:5<663::AID-JSFA232>3.0.CO;2-L Ancos B, Cano MP, Hernandez A, Monreal M. Effects of microwave heating on pigment composition and color of fruit purees. J Sci Food Agric. 1999;79:663-70.10.1002/(SICI)1097-0010(199904)79:5<663::AID-JSFA232>3.0.CO;2-L 

  29. Kripanand SM, Guruguntla S, Korra S. Effect of various drying methods on quality and flavor characteristics of mint leaves (Mentha spicata L.). J Food Pharm Sci. 2015;3:38-45. 

  30. 10.1007/s13197-014-1264-3 Saini RK, Shetty NP, Prakash M, Giridhar P. Effect of dehydration methods on retention of carotenoids, tocopherols, ascorbic acid and antioxidant activity in Moringa oleifera leaves and preparation of a RTE product. J Food Sci Technol. 2014;51:2176-82.2519088010.1007/s13197-014-1264-3 

  31. 10.1016/j.lwt.2006.12.013 Lim YY, Murtijaya J. Antioxidant properties of Phyllanthus amarus extracts as affected by different drying methods. LWT Food Sci Technol. 2007;40:1664-69.10.1016/j.lwt.2006.12.013 

  32. 10.1201/9781439833049 Kress-Rogers E, Brimelow CJ. Instrumentation and sensors for the food industry. 2nd ed. Cambridge, England: Woodhead Publishing Limited, 2001. 

  33. 10.1080/10942912.2010.489209 Zielinska M, Markowski M. Color characteristics of carrots: effect of drying and rehydration. Int J Food Prop. 2011;15:450-66. 

  34. 10.7455/ijfs/1.2.2012.a6 Sahoo NR, Pal US, Dash SK, Khan MD. Drying kinetics and quality aspects during heat pump drying of onion (Allium cepa L.). Int J Food Stud. 2012;1:159-67.10.7455/ijfs/1.2.2012.a6 

  35. Kamel SM, Thabet HA, Algadi EA. Influence of drying process on the functional properties of some plants. Chem Mater Res. 2013;3:1-9. 

  36. 10.1007/s11746-998-0232-3 Henry LK, Catignani GL, Schwartz SJ. Oxidative degradation kinetics of lycopene, lutein, and 9-cis and all-trans β-carotene. J Am Oil Chemists Soc. 1998;75:823-29.10.1007/s11746-998-0232-3 

  37. 10.1016/j.foodchem.2014.09.162 Gumusay OA, Borazan AA, Ercal N, Demirkol O. Drying effects on the antioxidant properties of tomatoes and ginger. Food Chem. 2015;173:156-62.2546600710.1016/j.foodchem.2014.09.162 

  38. Zhang D, Hamauzu Y. Phenolic compounds and their antioxidant properties in different tissues of carrots (Daucus carota L.). Food Agric Environ. 2004;2:95-100. 

  39. 10.1021/jf9001044 Sun T, Simon PW, Tanumihardjo SA. Antioxidant phytochemicals and antioxidant capacity of biofortified carrots (Daucus carota L.) of various colors. J Agric Food Chem. 2009;57:4142-47.1935853510.1021/jf9001044 

관련 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로