$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Cu-SiO2 hybrid bonding simulation including surface roughness and viscoplastic material modeling: A critical comparison of 2D and 3D modeling approach

Microelectronics reliability, v.86, 2018년, pp.1 - 9  

Wlanis, Thomas (Materials Center Leoben Forschung GmbH, 8700 Leoben, Austria) ,  Hammer, René (Materials Center Leoben Forschung GmbH, 8700 Leoben, Austria) ,  Ecker, Werner (Materials Center Leoben Forschung GmbH, 8700 Leoben, Austria) ,  Lhostis, Sandrine (STMicroelectronics SAS, 38926 Crolles, France) ,  Sart, Clément (STMicroelectronics SAS, 38926 Crolles, France) ,  Gallois-Garreignot, Sébastien (STMicroelectronics SAS, 38926 Crolles, France) ,  Rebhan, Bernhard (EV Group, 4782 St. Florian am Inn, Austria) ,  Maier, Günther A. (Materials Center Leoben Forschung GmbH, 8700 Leoben, Austria)

Abstract AI-Helper 아이콘AI-Helper

Abstract Cu-SiO2 direct hybrid bonding is considered as one of the key enabling technologies for 3D integration. Previous studies showed that the main process parameters influencing the bonding quality are temperature and annealing time, as well as the mechanical stress at the Cu-Cu interface. The ...

주제어

참고문헌 (40)

  1. Arden 2010 More-than-Moore white paper 

  2. SCIENCE CHINA Inf. Sci. Farooq 54 1012 2011 10.1007/s11432-011-4226-7 3D integration review 

  3. Microelectron. Reliab. Ko 50 481 2010 10.1016/j.microrel.2009.09.015 Wafer-level bonding/stacking technology for 3D integration 

  4. Ko 1 2010 3rd Electronics System Integration Technology Conference ESTC, IEEE Wafer-to-wafer hybrid bonding technology for 3D IC 

  5. J. Electron. Mater. Di Liang 37 1552 2008 10.1007/s11664-008-0489-1 Bowers low-temperature, strong SiO2-SiO2 covalent wafer bonding for III-V compound semiconductors-to-silicon photonic integrated circuits 

  6. Microelectron. Reliab. Tang 52 312 2012 10.1016/j.microrel.2011.04.016 Wafer-level Cu-Cu bonding technology 

  7. Int. J. Solids Struct. Beilliard 117 208 2017 10.1016/j.ijsolstr.2016.02.041 Thermomechanical finite element modeling of Cu-SiO 2 direct hybrid bonding with a dishing effect on Cu surfaces 

  8. Acta Mater. Made 60 578 2012 10.1016/j.actamat.2011.09.038 Experimental characterization and modeling of the mechanical properties of Cu-Cu thermocompression bonds for three-dimensional integrated circuits 

  9. Open Physics Neas 10 99 2012 10.2478/s11534-011-0096-2 

  10. Phys. Rev. Lett. Keralavarma 109 2012 10.1103/PhysRevLett.109.265504 Power-law creep from discrete dislocation dynamics 

  11. Philos. Mag. Mordehai 88 899 2008 10.1080/14786430801992850 Introducing dislocation climb by bulk diffusion in discrete dislocation dynamics 

  12. J. Press. Vessel. Technol. Chaboche 105 153 1983 10.1115/1.3264257 On the plastic and viscoplastic constitutive equations-part I 

  13. Mater. Sci. Eng. A Zhao 410-411 188 2005 10.1016/j.msea.2005.08.074 Influence of stacking fault energy on nanostructure formation under high pressure torsion 

  14. Phys. Rev. B Rasmussen 56 2977 1997 10.1103/PhysRevB.56.2977 Simulations of the atomic structure, energetics, and cross slip of screw dislocations in copper 

  15. Banerjee 2005 An Evaluation of Plastic Flow Stress Models for the Simulation of High-Temperature and High-Strain-Rate Deformation of Metals, arXiv Preprint Cond-Mat/0512466 

  16. Bunshah 2001 Handbook of Hard Coatings 

  17. J. Phys. Chem. Ref. Data Ledbetter 3 897 1974 10.1063/1.3253150 Elastic properties of metals and alloys. II. Copper 

  18. Frost 1982 Deformation Mechanism Maps: The Plasticity and Creep of Metals and Ceramics 

  19. Mater. Sci. Eng. A Owen 216 20 1996 10.1016/0921-5093(96)10382-8 Low stress creep behavior 

  20. Mater. Today Mobus 10 18 2007 10.1016/S1369-7021(07)70304-8 Nanoscale tomography in materials science 

  21. Microsc. Microanal. Wijaya 23 254 2017 10.1017/S1431927617001957 3D microanalysis of porous copper using FIB-tomography in combination with X-ray computed tomography 

  22. NDT&E Int. Grunwald 84 99 2016 10.1016/j.ndteint.2016.08.003 Advanced 3D failure characterization in multi-layered PCBs 

  23. Microelectron. Reliab. Grunwald 64 370 2016 10.1016/j.microrel.2016.07.075 Automatized failure analysis of tungsten coated TSVs via scanning acoustic microscopy 

  24. Philos. Mag. Yang 92 3243 2012 10.1080/14786435.2012.693215 Yield stress influenced by the ratio of wire diameter to grain size - a competition between the effects of specimen microstructure and dimension in micro-sized polycrystalline copper wires 

  25. Acta Mater. Kiener 56 580 2008 10.1016/j.actamat.2007.10.015 A further step towards an understanding of size-dependent crystal plasticity 

  26. J. Mech. Phys. Solids Acharya 48 2213 2000 10.1016/S0022-5096(00)00013-2 Grain-size effect in viscoplastic polycrystals at moderate strains 

  27. Philos. Mag. Wheeler 96 3379 2016 10.1080/14786435.2016.1224945 The effect of size on the strength of FCC metals at elevated temperatures 

  28. Mater. Des. Hammer 132 72 2017 10.1016/j.matdes.2017.06.052 High resolution residual stress gradient characterization in W/TiN-stack on Si(100) 

  29. Mech. Adv. Mater. Mod. Process. Basavalingappa 3 D3139 2017 10.1186/s40759-017-0021-5 Modeling the copper microstructure and elastic anisotropy and studying its impact on reliability in nanoscale interconnects 

  30. J. Appl. Phys. Deluca 120 2016 10.1063/1.4967927 Integrated experimental and computational approach for residual stress investigation near through-silicon vias 

  31. J. Appl. Crystallogr. Abboud 50 901 2017 10.1107/S1600576717005581 Single-shot full strain tensor determination with microbeam X-ray Laue diffraction and a two-dimensional energy-dispersive detector 

  32. Scr. Mater. Keckes 67 748 2012 10.1016/j.scriptamat.2012.07.034 X-ray nanodiffraction reveals strain and microstructure evolution in nanocrystalline thin films 

  33. Sol. Energy Mater. Sol. Cells Handara 162 30 2017 10.1016/j.solmat.2016.12.028 Probing stress and fracture mechanism in encapsulated thin silicon solar cells by synchrotron X-ray microdiffraction 

  34. Acta Mater. Massl 55 4835 2007 10.1016/j.actamat.2007.05.002 A direct method of determining complex depth profiles of residual stresses in thin films on a nanoscale 

  35. Mater. Sci. Eng. A Sebastiani 528 7901 2011 10.1016/j.msea.2011.07.001 Depth-resolved residual stress analysis of thin coatings by a new FIB-DIC method 

  36. Thin Solid Films Schongrundner 564 321 2014 10.1016/j.tsf.2014.06.003 Critical assessment of the determination of residual stress profiles in thin films by means of the ion beam layer removal method 

  37. J. Electron. Mater. Radchenko 45 6222 2016 10.1007/s11664-016-5012-5 Probing phase transformations and microstructural evolutions at the small scales 

  38. Proc. Eng. Tian 139 101 2016 10.1016/j.proeng.2015.09.242 On the mechanical stresses of cu through-silicon via (TSV) samples fabricated by SK Hynix vs. SEMATECH - enabling robust and reliable 3-D interconnect/integrated circuit (IC) technology 

  39. J. Electron. Mater. Shin 41 712 2012 10.1007/s11664-012-1943-7 Microstructure evolution and defect formation in cu through-silicon Vias (TSVs) during thermal annealing 

  40. Mater. Sci. Eng. A Budiman 538 89 2012 10.1016/j.msea.2012.01.017 Plasticity of indium nanostructures as revealed by synchrotron X-ray microdiffraction 

관련 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로