$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

유해 남조류 제어를 위한 생물유래 살조물질 Naphthoquinone 유도체 (NQ 2-0)의 현장 적용 가능성
A Field Application Feasibility of Biologically Derived Substances (Naphthoquinone Derivate: NQ 2-0) for the Mitigation of Harmful Cyanobacterial Blooms 원문보기

Ecology and resilient infrastructure, v.4 no.3, 2017년, pp.130 - 141  

주재형 (한양대학교 생명과학과) ,  박종성 (한양대학교 생명과학과) ,  최혜정 (한양대학교 생명과학과) ,  이헌우 (한양대학교 생명과학과) ,  한명수 (한양대학교 생명과학과)

초록
AI-Helper 아이콘AI-Helper

유해 남조류를 친환경적으로 제어하기 위해 개발된 생물유래 물질인 naphthoquinone (NQ) 유도체의 현장 적용 가능성을 확인하고자 하였다. 기흥 저수지 수변에 30 ton 규모의 mesocosm을 설치하여 현장 조건에서의 살조효과와 비생물학적, 생물학적 요인을 모니터링하였다. NQ 2-0 물질을 처리한 결과, 대조구에서는 대상 조류인 Microcystis sp.의 세포밀도가 지속적으로 증가한 반면, 처리구에서는 실험 초기 $7.9{\times}10^4cells\;mL^{-1}$에서 접종 후 점진적으로 세포수가 감소하여 10일차 $9.7{\times}10^2cells\;mL^{-1}$으로 대조구 대비 99.4% 감소하였다. 실험 종료시인 15일차에는 Microcystis sp. 세포수가 100% 제거되었다. 대상 조류인 Microcystis sp. 종만을 선택적으로 제어하였을 뿐만 아니라, 다른 식물플랑크톤의 성장과 식물플랑크톤 종 다양성 지수도 증진되었다. 또한, 식물플랑크톤을 제외하고 NQ 2-0 물질에 의하여 물리 화학적요인 (수온, 용존 산소, pH, 전기전도도, 영양염)과 생물요인 (박테리아, HNFs, 섬모충, 동물플랑크톤)에 영향을 미치지 않았으며, 대조구와 처리구에서 유사한 경향이 관찰되었다.

Abstract AI-Helper 아이콘AI-Helper

We evaluated the field application feasibility that biologically derived substances (Naphthoquinone derivate: NQ 2-0) can be used for the eco-friendly mitigation of natural harmful cyanobacterial blooms in freshwater. We conducted a 30 ton scale mesocosm experiment to investigate the effects of NQ 2...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • Mesocosm 내 NQ 2-0 접종 후 물질에 의한 식물플랑크톤 군집의 변화를 알아보기 위해 종 다양성 지수(diversity index)를 산출하고자 하였다. NQ 2-0 물질을 적용하지 않은 대조구와 NQ 2-0 물질을 처리한 처리구에서 각각 산출하였으며, 종 다양성 지수의 경우 Margalef(1958)의 정보이론에 의해 유도된 ShannonWiever의 식(Pielou 1969)을 이용하여 산출하였다.
  • 그러나, 최종 선정된 물질은 현장 조건에서의 살조효과와 다른 생물학적 요인과 비생물학적 요인에 대한 평가는 이루어지지 않았다. 따라서 본 연구에서는 최종 선정된 물질의 현장 적용 가능성을 평가하기 위해 mesocosm 실험을 통해 확인하고자 하였다. 수 생태계 연구에 유용한 도구로서 다양한 분야에 이용되는 mesocosm 실험은 실제 현장에서 자연 생태계 시스템의 기능과 구조를 단순화 시킨 생태계 실험의 방법이다.
  • 2004). 따라서, 개발된 살조물질의 mesocosm 실험은 실험실 내의 소규모 실험이 아닌 큰 규모 실험에서의 살조효과 분석 및 새로운 물질의 생태계 적용 시 발생 가능한 문제점의 확인을 위한 목적으로 수행되었다.
  • 본 연구에서는 생물유래 물질인 naphthoquinone(NQ) 2-0 물질을 현장 적용에 앞서 mesocosm 적용하여 현장 Microcystis 종에 대한 살조효과 평가뿐만 아니라, 식물플랑크톤 군집을 포함한 수계 내 다양한 생물의 변화와 다양한 비생물학적 요인의 모니터링을 통하여 개발된 살조물질의 현장 적용 가능성을 평가하고자 하였다.
  • 실험실 내 실험에서 우수한 살조효과가 입증된 NQ 2-0 물질의 현장 적용 가능성과 생태계 미치는 영향을 평가하기 위해 mesocosm 내 접종 후 현장에 존재하는 남조류 Microcystis sp. 제어효과 및 생물학적, 비생물학적 요인을 모니터링 하고자 하였다. Mesocosm의 경우, 매년 여름철 남조류 Microcystis sp.
  • 종만을 99% 이상 선택적으로 제어하였으며, Microcystis sp. 종의 사멸에 따른 다른 조류가 성장할 수 있는 환경을 제공하였다. Microcystis sp.
본문요약 정보가 도움이 되었나요?

질의응답

핵심어 질문 논문에서 추출한 답변
수 생태계 연구에 유용한 도구인 mesocosm 실험의 특징은 무엇인가? 수 생태계 연구에 유용한 도구로서 다양한 분야에 이용되는 mesocosm 실험은 실제 현장에서 자연 생태계 시스템의 기능과 구조를 단순화 시킨 생태계 실험의 방법이다. 더구나 현장수를 이용한 mesocosm 실험은 화학적인 교란 혹은 새로운 환경조건(수온 상승, CO2 농도 증가, 새로운 화학물질등)이 수 생태계에 작용되었을 때 생태계 반응을 평가하기 좋은 방법이며(Ahn et al. 2001, Naito et al. 2003, Orihel et al. 2006) 더구나, 유해 조류가 발생한 현장수를 이용한 mesocosm 실험은 실험실에서 확인된 살조 물질의 효과를 현장 유사 생태계 내에서 검증하고, 적용 시 발생할 수 있는 살조효과 및 독성에 의한 생태계 교란에 대한 요인들을 현장 적용 이전에 미리 확인할 수 있기 때문에 (Odum and Odum 2003, Willis et al. 2004) 실험실 내 연구결과와 실제 현장적용 사이의 차이를 줄일 수 있는 중요한 실험이다(Han et al. 1995, Wirth et al.
유해 남조류에 의한 하천 오염의 특징은 무엇인가? 특히, Microcystis sp. 종과 같은 유해 남조류는 미관상의 불쾌감, 음용수의 이취미 발생으로 인한 먹는물 확보에 어려움을 줄뿐만 아니라, 간독소 microcystins을 생성하여 야생 동물과 가축에 치명적인 해를 주며, 인간의 건강까지 위협한다(Kiviranta et al. 1991, Oberholster 2004, Kang et al.
남조류에 의한 녹조 대발생의 문제점은 무엇인가? 여름철 남조류에 의한 녹조 대발생은 상수원 수원지를 포함한 하천 생태계 훼손 및 정수 비용 증가 등의 피해가 발생할 뿐만 아니라 경제적, 공중보건 측면에서 심각한 문제를 야기시킨다. 특히, Microcystis sp.
질의응답 정보가 도움이 되었나요?

참고문헌 (43)

  1. APHA. 2005. Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF, Washington D.C., USA. 

  2. Ahn, C.Y., Park, M.H., Joung, S.H., Kim, H.S., Jang, K.Y., and Oh, H.M. 2003. Growth inhibition of cyanobacteria by ultrasonic radiation: laboratory and enclosure studies. Environmental Science & Technology 37(13): 3031-3037. 

  3. Ahn, C., Mitsch, W.J., and Wolfe, W.E. 2001. Effects of recycled FGD liner material on water quality and macrophytes of constructed wetlands: A mesocosm experiment. Water Research 35(3): 633-642. 

  4. Baek, S.H., Jang, M.C., Son, M., Kim, S.W., Cho, H., and Kim, Y.O. 2013. Algicidal effects on Heterosigma akashiwo and Chattonella marina (Raphidophyceae), and toxic effects on natural plankton assemblages by a thiazolidinedione derivative TD49 in a microcosm. Journal of Applied Phycology 25(4): 1055-1064. 

  5. Byun, J.H., Joo, J.H., Kim, B.H., and Han, M.S. 2015. Application possibility of naphthoquinone derivative Nq 4-6 for mitigation of winter diatom bloom. Ecology and Resilient Infrastructure 2(3): 224-236. (in Korean) 

  6. Dong, Y., Chin, S.F., Blanco, E., Bey, E.A., Kabbani, W., Xie, X.J., Bornmann, W.G., Boothman, D.A., and Gao, J. 2009. Intratumoral delivery of ${\beta}$ -lapachone via polymer implants for prostate cancer therapy. Clinical Cancer Research 15(1): 131-139. 

  7. Han, M.S., Lee, K., and Yoo, K.I. 1995. Ecological studies on Togyo reservoir in Chulwon, Korea I. A field test for in situ aquatic net-enclosure mesocosm. Korean Journal of Limnology 28: 487-495. (in Korean) 

  8. Hickey, C.W. and Gibbs, M.M. 2009. Lake sediment phosphorus release management-decision support and risk assessment framework. New Zealand Journal of Marine and Freshwater Research 43(3): 819-856. 

  9. Hong, S.K. 2014. A Convention on biological diversity, island biodiversity and strategy of Korea. Journal of Korean Island 26: 187-202. (in Korean) 

  10. Jeong, H.J., Kim, J.S., Y.D. Yoo, Kim, S.T., Song, J.Y., Kim, T.H., Seong, K.A., Kang, N.S., Kim, M.S., Kim, J.H., Kim, S., Ryu, J., Lee, H.M., and Yih, W.H. 2008. Control of the harmful alga Cochlodinium polykrikoides by the naked ciliate Strombidinopsis jeokjo in mesocosm enclosures. Harmful Algae 7(3): 368-377. 

  11. Joo, J.H., Kang, Y.H., Park, B.S., Park, C.S., Cho, H., and Han, M.S. 2016a. A field application feasibility assessment of naphthoquinone derivatives for the mitigation of freshwater diatom Stephanodiscus blooms. Journal of Applied Phycology 28 (3): 1735-1746. 

  12. Joo, J.H., Cho, H., and Han, M.S. 2016b. Novel algicidal substance (naphthoquinone group) from bio-derived synthetic materials against harmful Cyanobacteria, Microcystis and Dolichospermum. Ecology and Resilient Infrastructure 3(1): 22-34. (in Korean) 

  13. Joo, J.H., Wang, P., Park, B.S., Byun, J.H., Choi, H.J., Kim, S.H., and Han, M.S. 2017. Improvement of cyanobacterialkilling biologically derived substances (BDSs) using an ecologically safe and cost-effective naphthoquinone derivative. Ecotoxicology and Environmental Safety 141:188-198. 

  14. Jung, S.W., Kim, B.H., Katano, T., Kong, D.S., and Han, M.S. 2008. Pseudomonas fluorescens HYK0210-SK09 offers species-specific biological control of winter algal blooms caused by freshwater diatom Stephanodiscus hantzschii, Journal of Applied Microbiology 105: 186-195. 

  15. Jung, S.W., Kwon, O.Y., Lee, J.H., and Han, M.S. 2009. Effects of water temperature and silicate on the winter blooming diatom Stephanodiscus hantzschii (Bacillariophyceae) growing in eutrophic conditions in the lower Han River, South Korea. Journal of Freshwater Ecology 24: 219-226. 

  16. Kang, Y.H., Jung, S.W., Joo, J.H., and Han, M.S. 2012. Use of immobilized algicidal bacteria to control natural freshwater diatom blooms. Hydrobiologia 683:151-162. 

  17. Kang, Y.H., Kim, B.R., Choi, H.J., Seo, J.G., Kim B.H., and Han, M.S. 2007. Enhancement of algicidal activity by immobilization of algicidal bacteria antagonistic to Stephanodiscus hantzschii (Bacillariophyceae). Journal of Applied Microbiology 103: 1983-1994. 

  18. Kang, Y.H., Jung, S.W., Jo, S.H., and Han, M.S. 2011. Field assessment of the potential of algicidal bacteria against diatom blooms. Biocontrol Science and Technology 21:969-984. 

  19. Kang, Y.H., Kim, J.D., Kim, B.H., Kong, D.S., and Han, M.S. 2005. Isolation and characterization of a bio-agent antagonistic to diatom, Stephanodiscus hantzschii. Journal of Applied Microbiology 98: 1030-1038. 

  20. Kaya, K., Liu, Y.D., Shen, Y.W., Xiao, B.D., and Sano, T. 2005. Selective control of toxic Microcystis water blooms using lysine and malonic acid: an enclosure experiment. Environmental toxicology 20(2): 170-178. 

  21. Kim, H.M., Lee, J.H., and An, K.G. 2008. Water quality and ecosystem health assessments in 407 urban stream ecosystem. Korean Journal of Environmental Biology 26: 311-322. (in Korean) 

  22. Kiviranta, J., K. Sivonen, S.I. Sivonen and K. Huovinen. 1991. Detection of toxicity of cyanobacteria by Artemia salina bioassay. Environmental Toxicology 6: 423-436. 

  23. Margalef, R. 1958. Information theory in ecology. General Systems 3: 36-71. 

  24. Monks, T.J., Hanzlik, R.P., Cohen, G.M., Ross, D., and Graham, D.G. 1992. Quinone chemistry and toxicity. Toxicology and Applied Pharmacology 112: 2-16. 

  25. Naito, W., Miyamoto, K.I., Nakanishi, J., Masunaga, S., and Bartell, S.M. 2003. Evaluation of an ecosystem model in ecological risk assessment of chemicals. Chemosphere 53(4): 363-375. 

  26. Nakai, S., Yamada, S., and Hosomi, M. 2005. Anti-cyanobacterial fatty acids released from Myriophyllum spicatum. Hydrobiologia 543(1): 71-78. 

  27. Nakano, S.I., Koitabashi, T., and Ueda, T. 1998. Seasonal changes in abundance of heterotrophic nanoflagellates and their consumption of bacteria in Lake Biwa with special reference to trophic interactions with Daphnia galeata. Archiv fur Hydrobiologie 142(1): 21-34. 

  28. O'Brien, P.J. 1991. Molecular mechanisms of quinone cytotoxicity. Chemico-Biological Interactions 80: 1-41. 

  29. Oberholster, P.J., Botha, A.M., and Grobbelaar, J.U. 2004. Microcystis aeruginosa: source of toxic microcystins in drinking water. African Journal of Biotechnology 3: 159-168. 

  30. Orihel, D.M., Paterson, M.J., Gilmour, C.C., Bodaly, R.A., Blanchfield, P.J., Hintelmann, H., Harris, R.C., and Rudd, J.W. 2006. Effect of loading rate on the fate of mercury in littoral mesocosms. Environmental Science & Technology 40(19): 5992-6000. 

  31. Odum, H.T. and Odum, B. 2003. Concepts and methods of ecological engineering. Ecological Engineering 20(5): 339-361. 

  32. Patterson, D.J. 2003. Free-living Freshwater Protozoa, ASM Press, Washington, USA. 

  33. Pielou, E.C. 1969. Shannon's formula as a measure of specific diversity: its use and misuse. The American Naturalist 100: 463-465. 

  34. Pilkaityte, R., Schoor, A., and Schubert, H. 2004. Response of phytoplankton communities to salinity changes-a mesocosm approach. Hydrobiologia 513(1): 27-38. 

  35. Prieto, L., Ruiz, J., Echevarria, F., Garcia, C.M., Bartual, A., Galvez, J.A., Corzo, A., and Macias, D. 2002. Scales and processes in the aggregation of diatom blooms: high time resolution and wide size range records in a mesocosm study. Deep Sea Research Part I: Oceanographic Research Papers 49(7): 1233-1253. 

  36. Rahmoun, N.M., Boucherit-Otmani, Z., Boucherit, K., Benabdallah, M., Villemin, D., and Choukchou-Braham, N. 2012. Antibacterial and antifungal activity of lawsone and novel naphthoquinone derivatives. Medecine et Maladies Infectieuses 42: 270-275. 

  37. Round, F.E., Crawford, R.M., and Mann, D.G. 1990. The diatom biology and morphology of genera, Cambridge University Press, Cambridge, UK. 

  38. Shao, J., Xu, Y., Wang, Z., Jiang, Y., Yu, G., Peng, X., and Li, R. 2011. Elucidating the toxicity targets of ${\beta}$ -ionone on photosynthetic system of Microcystis aeruginosa NIES-843 (Cyanobacteria). Aquatic Toxicology 104(1): 48-55. 

  39. Schrader, K.K., Nanayakkara, N.D., Tucker, C.S., Rimando, A.M., Ganzera, M., and Schaneberg, B.T. 2003. Novel derivatives of 9, 10-anthraquinone are selective algicides against the musty-odor cyanobacterium Oscillatoria perornata. Applied and Environmental Microbiology 69(9): 5319-5327. 

  40. Tangmouo, J.G., Meli, A.L., Komguem, J., Kuete, V., Ngounou, F.N., Lontsi, D., Beng, V.P., Choudhary, M.I., Sondengam, B.L. 2006. Crassiflorone, a new naphthoquinone from Diospyros crassiflora (Hien). Tetrahedron Letters 47: 3067-3070. 

  41. Willis, K.J., Van Den Brink, P.J., and Green, J.D. 2004. Seasonal variation in plankton community responses of mesocosms dosed with pentachlorophenol. Ecotoxicology 13(7): 707-720. 

  42. Wirth, E.F., Pennington, P.L., Lawton, J.C., DeLorenzo, M.E., Bearden, D., Shaddrix, B., Sivertsen, S., and Fulton, M.H. 2004. The effects of the contemporary-use insecticide (fipronil) in an estuarine mesocosm. Environmental Pollution 131(3): 365-371. 

  43. Wu, Y., Liu, J., Yang, L., Chen, H., Zhang, S., Zhao, H., and Zhang, N. 2011. Allelopathic control of cyanobacterial blooms by periphyton biofilms. Environmental Microbiology 13(3): 604-615. 

저자의 다른 논문 :

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로