$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Performance improvement and energy consumption reduction in refrigeration systems using phase change material (PCM)

Applied thermal engineering, v.142, 2018년, pp.723 - 735  

Bista, Subhanjan (Corresponding author.) ,  Hosseini, Seyed Ehsan ,  Owens, Evan ,  Phillips, Garrison

Abstract AI-Helper 아이콘AI-Helper

Abstract This paper presents a review of various research investigations on the application of phase change material (PCM) in refrigeration systems. Application of PCMs mostly in vapor compression refrigeration systems refrigeration systems have illustrated significant effects on the performance of...

주제어

참고문헌 (89)

  1. Renew. Sustain. Energy Rev. Hosseini 57 850 2016 10.1016/j.rser.2015.12.112 Hydrogen production from renewable and sustainable energy resources: promising green energy carrier for clean development 

  2. Energy Build. Raveendran 134 1 2017 10.1016/j.enbuild.2016.11.013 Performance studies on a domestic refrigerators retrofitted with building-integrated water-cooled condenser 

  3. J. Food Eng. Laguerre 81 144 2007 10.1016/j.jfoodeng.2006.10.029 Numerical simulation of air flow and heat transfer in domestic refrigerators 

  4. Energy Cheng 36 5797 2011 10.1016/j.energy.2011.08.050 A novel household refrigerator with shape-stabilized PCM (Phase Change Material) heat storage condensers: an experimental investigation 

  5. P. Binneberg, E. Kraus, H. Quack, P. Binneberg, E. Kraus, Purdue e-Pubs Reduction In Power Consumption Of Household Refrigerators By Using Variable Speed Compressors R17-4 REDUCTION IN POWER CONSUMPTION OF HOUSEHOLD REFRIGERATORS BY USING VARIABLE SPEED COMPRESSORS, n.d. 

  6. V. Kumar, R. Shrivastava, G. Nandan, Energy Saving Using Phase Change Material in Refrigerating System Energy Saving using Phase Change Material in Refrigerating system, 2016. 

  7. G. Cerri, Andrea Palmieri, Enrica Monticelli, D. Pezzoli, Identification of domestic refrigerator models including cool storage, in: Int. Congr. Refrig., Washington, DC, 2003. 

  8. IOSR J. Mech. Civ. Eng. Rahman 10 08 2013 10.9790/1684-1040816 Performance improvement of a domestic refrigerator using phase change material (PCM) 

  9. Appl. Therm. Eng. de Marchi 29 2358 2009 10.1016/j.applthermaleng.2008.12.003 Refrigerator COP with thermal storage 

  10. Int. J. Energy Res. Cheralathan 31 1398 2007 10.1002/er.1313 Performance analysis on industrial refrigeration system integrated with encapsulated PCM-based cool thermal energy storage system 

  11. Appl. Energy Negrao 88 3051 2011 10.1016/j.apenergy.2011.03.013 Energy and cost savings in household refrigerating appliances: a simulation-based design approach 

  12. Appl. Therm. Eng. Zalba 23 251 2003 10.1016/S1359-4311(02)00192-8 Review on thermal energy storage with phase change: materials, heat transfer analysis and applications 

  13. A. Abhilash, A.M. Menon, K. Anirudh, Comparison of a conventional domestic refrigerator with a PCM encapsulated refrigerator 4 (2015) 582-7. 

  14. Energy Build. Mastani Joybari 106 111 2015 10.1016/j.enbuild.2015.06.016 Heat and cold storage using phase change materials in domestic refrigeration systems: the state-of-the-art review 

  15. Int. J. Refrig. Sonnenrein 60 166 2015 10.1016/j.ijrefrig.2015.06.030 Copolymer-bound phase change materials for household refrigerating appliances: experimental investigation of power consumption, temperature distribution and demand side management potential 

  16. J. Sci. Ind. Res. Bhatt 60 591 2000 Domestic refrigerators: field studies and energy efficiency improvement 

  17. Arora 2009 Refrigeration and Air Conditioning 

  18. Int. J. Energy Res. Riffat 28 753 2004 10.1002/er.991 Improving the coefficient of performance of thermoelectric cooling systems: a review 

  19. Int. J. Air-Cond. Refrig. Khan 24 1630007 2016 10.1142/S201013251630007X Conventional refrigeration systems using phase change material: a review 

  20. Sci. Technol. Built Environ. Khan 21 462 2015 10.1080/23744731.2015.1023161 Effect of phase change material on compressor on-off cycling of a household refrigerator 

  21. ASHRAE Trans. Coulter 103 587 1997 Experimental analysis of cycling losses in domestic refrigerator-freezers 

  22. Int. J. Refrig. Janssen 15 152 1992 10.1016/0140-7007(92)90005-F Cycling losses in domestic appliances: an experimental and theoretical analysis 

  23. Recent Adv. Mech. Eng.(IJMECH) Afroz 3 43 2014 Diminution of temperature fluctuation inside the cabin of a household refrigerator using phase change material 

  24. Zeitschrift Fur Leb. Und-Forsch. a-Food. Res. Technol. Alvarez 206 52 1998 10.1007/s002170050213 Effect of temperature fluctuations during frozen storage on the quality of potato tissue (cv. Monalisa) 

  25. Eur. Food Res. Technol. Sousa 221 132 2005 10.1007/s00217-005-1189-1 The effect of the pre-treatments and the long and short-term frozen storage on the quality of raspberry (cv. Heritage) 

  26. J. Dairy Sci. Flores 82 1408 1999 10.3168/jds.S0022-0302(99)75367-1 Recrystallization in ice cream after constant and cycling temperature storage conditions as affected by stabilizers 

  27. Int. Dairy J. Donhowe 6 1209 1996 10.1016/S0958-6946(96)00030-1 Recrystallization of ice during bulk storage of ice cream 

  28. J. Food Eng. Phimolsiripol 84 48 2008 10.1016/j.jfoodeng.2007.04.016 Effects of freezing and temperature fluctuations during frozen storage on frozen dough and bread quality 

  29. LWT - Food Sci. Technol. Gormley 35 190 2002 10.1006/fstl.2001.0837 The effect of fluctuating vs. constant frozen storage temperature regimes on some quality parameters of selected food products 

  30. Asian J. Appl. Sci. Hossenkhan 6 56 2013 10.3923/ajaps.2013.56.67 Effect of phase change material on performance of a household refrigerator 

  31. Appl. Therm. Eng. Wang 27 2911 2007 10.1016/j.applthermaleng.2005.06.010 The novel use of phase change materials in refrigeration plant. Part 3: PCM for control and energy savings 

  32. Int. Refrig. Air Cond. Tulapurkar 8 2010 Phase change materials for domestic refrigerators to improve food quality and prolong compressor off time 

  33. Int. J. Refrig. Veerakumar 67 271 2016 10.1016/j.ijrefrig.2015.12.005 Phase change material based cold thermal energy storage: materials, techniques and applications - a review 

  34. Energy Convers. Manage. Gin 51 2698 2010 10.1016/j.enconman.2010.06.005 Effect of door opening and defrost cycle on a freezer with phase change panels 

  35. Int J Heat Mass Transf Alvarado 50 1938 2007 10.1016/j.ijheatmasstransfer.2006.09.026 Thermal performance of microencapsulated phase change material slurry in turbulent flow under constant heat flux 

  36. Appl. Energy Oro 99 513 2012 10.1016/j.apenergy.2012.03.058 Review on phase change materials (PCMs) for cold thermal energy storage applications 

  37. Int. J. Refrig. Saito 25 177 2002 10.1016/S0140-7007(01)00078-0 Recent advances in research on cold thermal energy storage 

  38. Renew. Sustain. Energy Rev. Kenisarin 14 955 2010 10.1016/j.rser.2009.11.011 High-temperature phase change materials for thermal energy storage 

  39. Renew. Sustain. Energy Rev. Sharma 13 318 2009 10.1016/j.rser.2007.10.005 Review on thermal energy storage with phase change materials and applications 

  40. Renew. Sustain. Energy Rev. Regin 12 2438 2008 10.1016/j.rser.2007.06.009 Heat transfer characteristics of thermal energy storage system using PCM capsules: a review 

  41. Renew. Sustain. Energy Rev. Cabeza 15 1675 2011 10.1016/j.rser.2010.11.018 Materials used as PCM in thermal energy storage in buildings: a review 

  42. Appl. Therm. Eng. Cabeza 22 1141 2002 10.1016/S1359-4311(02)00035-2 Heat transfer enhancement in water when used as PCM in thermal energy storage 

  43. Renew. Sustain. Energy Rev. Gil 14 31 2010 10.1016/j.rser.2009.07.035 State of the art on high temperature thermal energy storage for power generation. Part 1-concepts, materials and modellization 

  44. Energy Build. Osterman 49 37 2012 10.1016/j.enbuild.2012.03.022 Review of PCM based cooling technologies for buildings 

  45. Appl. Therm. Eng. Nagano 23 229 2003 10.1016/S1359-4311(02)00161-8 Thermal characteristics of manganese (II) nitrate hexahydrate as a phase change material for cooling systems 

  46. Sol. Energy Mater. Sol. Cells Tyagi 92 891 2008 10.1016/j.solmat.2008.02.021 Thermal cycle testing of calcium chloride hexahydrate as a possible PCM for latent heat storage 

  47. Energy He 29 1785 2004 10.1016/j.energy.2004.03.002 Phase transition temperature ranges and storage density of paraffin wax phase change materials 

  48. Renew. Sustain. Energy Rev. Zhai 22 108 2013 10.1016/j.rser.2013.02.013 A review on phase change cold storage in air-conditioning system: materials and applications 

  49. Appl. Therm. Eng. Dimaano 22 365 2002 10.1016/S1359-4311(01)00095-3 The capric-lauric acid and pentadecane combination as phase change material for cooling applications 

  50. Renew. Energy Oro 57 130 2013 10.1016/j.renene.2013.01.043 Experimental study on the selection of phase change materials for low temperature applications 

  51. Int. J. Refrig. Azzouz 32 1634 2009 10.1016/j.ijrefrig.2009.03.012 Enhancing the performance of household refrigerators with latent heat storage: an experimental investigation 

  52. 10.3923/ajaps.2013.56.67 M.I.H. Khan, H.M.M. Afroz, An experimental investigation of the effects of phase change material on coefficient of performance of a household refrigerator, in: Int Conf Mech Eng Renew Energy 2011, 2011. https://doi.org/10.3923/ajaps.2013.56.67. 

  53. Sol. Wind Technol. Onyejekwe 6 11 1989 10.1016/0741-983X(89)90033-7 Cold storage using eutectic mixture of NaCl/H2O: an application to photovoltaic compressor vapour freezers 

  54. Appl. Therm. Eng. Marques 63 511 2014 10.1016/j.applthermaleng.2013.11.043 Novel design and performance enhancement of domestic refrigerators with thermal storage 

  55. K. Azzouz, D. Leducq, J. Guilpart, D. Gobin, Improving the energy efficiency of a vapor compression system using a phase change material, in: Second Conf Phase Chang Mater & Slurry, 2005. 

  56. Int. J. Air-Cond. Refrig. Khan 21 1350029 2013 10.1142/S2010132513500296 Experimental investigation of performance improvement of household refrigerator using phase change material 

  57. Int. J. Refrig. Visek 43 71 2014 10.1016/j.ijrefrig.2014.03.001 Advanced sequential dual evaporator domestic refrigerator/freezer: System energy optimization 

  58. E. Maltini, G. Cortella, M. Stecchini, M. Del Torre, P. Pittia, M. Spaziani, et al., Design and performance of a constant temperature compartment for domestic refrigerators (2004) 432-434. 

  59. J. Food Eng. Gin 100 372 2010 10.1016/j.jfoodeng.2010.04.016 The use of PCM panels to improve storage condition of frozen food 

  60. 10.1615/ICHMT.2012.CHT-12.430 M. Berdja, B. Abbad, M. Laidi, F. Yahi, M. Ouali, Numerical simulation of a phase change material (PCM) in a domestic refrigerator powered by photovoltaic energy, in: Proc CHT-12 ICHMT Int Symp Adv Comput Heat Transf July 1-6, 2012, Bath, Engl, 2012. 

  61. Glob. J. Res. Eng. Mech. Mech. Eng. Rahman 13 2013 Performance improvement of a domestic refrigerator by using PCM (Phase Change Material) 

  62. Int. J. Refrig. Oro 35 984 2012 10.1016/j.ijrefrig.2012.01.004 Improving thermal performance of freezers using phase change materials 

  63. Int. J. Refrig. Oro 35 1709 2012 10.1016/j.ijrefrig.2012.05.004 Thermal analysis of a low temperature storage unit using phase change materials without refrigeration system 

  64. Int. J. Refrig. Han 33 1478 2010 10.1016/j.ijrefrig.2010.05.014 Reduction of the refrigerant-induced noise from the evaporator-inlet pipe in a refrigerator 

  65. Appl. Therm. Eng. Celik 31 2485 2011 10.1016/j.applthermaleng.2011.04.014 Studies on the flow-induced noise at the evaporator of a refrigerating system 

  66. Appl. Therm. Eng. Hartmann 51 40 2013 10.1016/j.applthermaleng.2012.08.054 Popping noise in household refrigerators: Fundamentals and practical solutions 

  67. HVAC&R Res. Gin 17 257 2011 10.1080/10789669.2011.572222 Modeling of phase change material implemented into cold storage application 

  68. 10.1145/2487166.2487209 J. Taneja, K. Lutz, D. Culler, Flexible loads in future energy networks, in: Proc Fourth Int Conf Futur Energy Syst - e-Energy ’13, 2013, pp. 285. https://doi.org/10.1145/2487166.2487209. 

  69. 10.1109/SmartGridComm.2013.6687968 J. Taneja, K. Lutz, D. Culler, The impact of flexible loads in increasingly renewable grids, in: 2013 IEEE Int Conf Smart Grid Commun SmartGridComm 2013, 2013, pp. 265-70. https://doi.org/10.1109/SmartGridComm.2013.6687968. 

  70. Energy Convers. Manage. Zehir 64 238 2012 10.1016/j.enconman.2012.05.012 Demand Side Management by controlling refrigerators and its effects on consumers 

  71. Int. J. Refrig. Oro 42 26 2014 10.1016/j.ijrefrig.2014.03.002 Energy management and CO2 mitigation using phase change materials (PCM) for thermal energy storage (TES) in cold storage and transport 

  72. I.H. Khan, H.M.M. Afroz, M. Rahman, Enhancement of higher evaporating temperature of household refrigerator using phase change material 2013 (2013) 1-3. https://doi.org/10.13140/RG.2.1.1534.7043. 

  73. Appl. Therm. Eng. Elarem 125 1320 2017 10.1016/j.applthermaleng.2017.07.113 Performance analysis of a household refrigerator integrating a PCM heat exchanger 

  74. Renew. Energy Riffat 23 313 2001 10.1016/S0960-1481(00)00170-1 A novel thermoelectric refrigeration system employing heat pipes and a phase change material: an experimental investigation 

  75. Appl. Therm. Eng. Omer 21 1265 2001 10.1016/S1359-4311(01)00010-2 Experimental investigation of a thermoelectric refrigeration system employing a phase change material integrated with thermal diode (thermosyphons) 

  76. Int. J. Refrig. Sonnenrein 51 154 2015 10.1016/j.ijrefrig.2014.12.011 Reducing the power consumption of household refrigerators through the integration of latent heat storage elements in wire-and-tube condensers 

  77. Polymer (Guildf) Jiang 41 2041 2000 10.1016/S0032-3861(99)00342-0 Confined crystallization behavior of PEO in silica networks 

  78. Polymer (Guildf) Jiang 43 117 2002 10.1016/S0032-3861(01)00613-9 Study on transition characteristics of PEG/CDA solid-solid phase change materials 

  79. Sol. Energy Mater. Sol. Cells Li 91 764 2007 10.1016/j.solmat.2007.01.011 Preparation and characterization of cross-linking PEG/MDI/PE copolymer as solid-solid phase change heat storage material 

  80. Thermochim. Acta Pielichowski 442 18 2006 10.1016/j.tca.2005.11.013 Thermal properties of poly(ethylene oxide)/lauric acid blends: a SSA-DSC study 

  81. Int. J. Heat Mass Transf. Py 44 2727 2001 10.1016/S0017-9310(00)00309-4 Paraffin/porous-graphite-matrix composite as a high and constant power thermal storage material 

  82. Sol. Energy Mater. Sol. Cells Feng 95 644 2011 10.1016/j.solmat.2010.09.033 Preparation and characterization of polyethylene glycol/active carbon composites as shape-stabilized phase change materials 

  83. Mater. Chem. Phys. Sarı 109 459 2008 10.1016/j.matchemphys.2007.12.016 Preparation, thermal properties and thermal reliability of capric acid/expanded perlite composite for thermal energy storage 

  84. Sol. Energy Mater. Sol. Cells Cheng 94 1636 2010 10.1016/j.solmat.2010.05.020 Heat conduction enhanced shape-stabilized paraffin/HDPE composite PCMs by graphite addition: preparation and thermal properties 

  85. Energy Cheng 59 265 2013 10.1016/j.energy.2013.06.045 Numerical analysis of a novel household refrigerator with shape-stabilized PCM (phase change material) heat storage condensers 

  86. Energy Convers. Manage. Yuan 84 550 2014 10.1016/j.enconman.2014.04.086 Multi-objective optimization of household refrigerator with novel heat-storage condensers by Genetic algorithm 

  87. Appl. Therm. Eng. Wang 27 2893 2007 10.1016/j.applthermaleng.2005.06.011 The novel use of phase change materials in refrigeration plant. Part 1: experimental investigation 

  88. Appl. Therm. Eng. Wang 27 2902 2007 10.1016/j.applthermaleng.2005.06.009 The novel use of phase change materials in refrigeration plant. Part 2: dynamic simulation model for the combined system 

  89. Energy Marques 55 457 2013 10.1016/j.energy.2013.03.091 Theoretical modelling and experimental investigation of a thermal energy storage refrigerator 

관련 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로