$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Residual stress control of Cu film deposited using a pulsed direct current magnetron sputtering

Thin solid films, v.660, 2018년, pp.601 - 605  

Kim, Tae Hyung (Department of Materials Science and Engineering, Sungkyunkwan University) ,  Lee, Soo Jung (Department of Materials Science and Engineering, Sungkyunkwan University) ,  Kim, Do Han (Department of Materials Science and Engineering, Sungkyunkwan University) ,  Kim, Dong Woo (Department of Materials Science and Engineering, Sungkyunkwan University) ,  Bae, Jeong Woon (Department of Materials Science and Engineering, Sungkyunkwan University) ,  Kim, Kyong Nam (Department of Advanced Materials, Daejeon University) ,  Kim, Yong Mo (STC Division, Korea Instrument Co., Ltd.) ,  Yeom, Geun Young (Department of Materials Science and Engineering, Sungkyunkwan University)

Abstract AI-Helper 아이콘AI-Helper

Abstract Residual stress of 10 μm thick copper (Cu) film deposited using direct current (DC) magnetron sputtering system was analyzed for various pulsed DC power conditions. It is found that the increase of pulse frequency at a fixed duty ratio of 80% from continuous wave (CW) to 100 kHz while m...

참고문헌 (30)

  1. Microelectron. Reliab. Cheng 52 905 2012 10.1016/j.microrel.2011.05.009 Heat dissipation design and analysis of high power LED array using the finite element method 

  2. J. Power Sources Wu 109 160 2002 10.1016/S0378-7753(02)00048-4 Heat dissipation design for lithium-ion batteries 

  3. Microelectron. J. Wu 43 280 2012 10.1016/j.mejo.2012.01.007 A study on the heat dissipation of high power multi-chip COB LEDs 

  4. IEEE Electron Device Lett. Tuckerman 2 126 1981 10.1109/EDL.1981.25367 High-performance heat sinking for VLSI 

  5. Int. J. Heat Mass Transf. Peles 48 3615 2005 10.1016/j.ijheatmasstransfer.2005.03.017 Forced convective heat transfer across a pin fin micro heat sink 

  6. Appl. Phys. Lett. Biercuk 80 2767 2002 10.1063/1.1469696 Carbon nanotube composites for thermal management 

  7. Appl. Phys. Lett. Wu 87 2005 10.1063/1.2133916 Effects of surface metal layer on the thermal contact resistance of carbon nanotube arrays 

  8. Appl. Phys. A Mater. Sci. Process. Hone 74 339 2002 10.1007/s003390201277 Thermal properties of carbon nanotubes and nanotube-based materials 

  9. Zhimin 51 2005 Proceedings of the IEEE 55th Electronic Components and Technology Conference, Lake Buena Vista, FL, 31 May 

  10. Zhimin 373 2004 Proceedings of the IEEE 6th High Density Microsystem Design and Packaging and Component Failure Analysis Conference, Shanghai, China, 30 June 

  11. Appl. Phys. Lett. Kordas 90 2007 10.1063/1.2714281 Chip cooling with integrated carbon nanotube microfin architectures 

  12. Appl. Phys. Lett. Gudmundsson 78 3427 2001 10.1063/1.1376150 Evolution of the electron energy distribution and plasma parameters in a pulsed magnetron discharge 

  13. Surf. Coat. Technol. Kouznetzov 122 290 1999 10.1016/S0257-8972(99)00292-3 A novel pulsed magnetron sputter technique utilizing very high target power densities 

  14. Thin Solid Films Aissa 550 264 2014 10.1016/j.tsf.2013.11.073 Comparison of the structural properties and residual stress of AlN films deposited by dc magnetron sputtering and high power impulse magnetron sputtering at different working pressures 

  15. Thin Solid Films Ehiasarian 457 270 2004 10.1016/j.tsf.2003.11.113 Comparison of microstructure and mechanical properties of chromium nitride-based coatings deposited by high power impulse magnetron sputtering and by the combined steered cathodic arc/unbalanced magnetron technique 

  16. Surf. Coat. Technol. Ehiasarian 163 267 2003 10.1016/S0257-8972(02)00479-6 High power pulsed magnetron sputtered CrNx films 

  17. Surf. Coat. Technol. Greczynski 206 4202 2012 10.1016/j.surfcoat.2012.04.024 Role of Ti n+ and Al n+ ion irradiation (n = 1, 2) during Ti1?x Alx N alloy film growth in a hybrid HIPIMS/magnetron mode 

  18. Surf. Coat. Technol. Luo 236 13 2013 10.1016/j.surfcoat.2013.07.003 Hybrid HIPIMS and DC magnetron sputtering deposition of TiN coatings: deposition rate, structure and tribological properties 

  19. J. Mech. Phys. Solids Freund 48 1159 2000 10.1016/S0022-5096(99)00070-8 Substrate curvature due to thin film mismatch strain in the nonlinear deformation range 

  20. J. Appl. Phys. Laegreid 32 365 1961 10.1063/1.1736012 Sputtering yields of metals for Ar+ and ne+ ions with energies from 50 to 600 eV 

  21. J. Appl. Phys. Rosenberg 33 1842 1962 10.1063/1.1728843 Sputtering yields for low energy He+-, Kr+-, and Xe+-ion bombardment 

  22. J. Appl. Phys. Xu 105 2009 10.1063/1.3068191 In situ measurements of stress evolution for nanotwin formation during pulse electrodeposition of copper 

  23. Thin Solid Films Kim 475 91 2005 10.1016/j.tsf.2004.07.020 Spatially resolved optical emission spectroscopy of pulse magnetron sputtering discharge 

  24. J. Phys. D. Appl. Phys. Han 42 2009 10.1088/0022-3727/42/4/043001 Recent progress in thin film processing by magnetron sputtering with plasma diagnostics 

  25. J. Electroceram. Park 23 536 2009 10.1007/s10832-008-9530-2 Physical properties of transparent conducting indium doped zinc oxide thin films deposited by pulsed DC magnetron sputtering 

  26. Surf. Coat. Technol. Lin 204 2230 2010 10.1016/j.surfcoat.2009.12.013 The structure and properties of chromium nitride coatings deposited using dc, pulsed dc and modulated pulse power magnetron sputtering 

  27. Acta Mater. Barnett 52 5093 2004 10.1016/j.actamat.2004.07.015 Influence of grain size on the compressive deformation of wrought Mg-3Al-1Zn 

  28. Model. Simul. Mater. Sci. Eng. Cao 25 2017 10.1088/1361-651X/aa80fb Effect of texture and grain size on the residual stress of nanocrystalline thin films 

  29. Appl. Phys. Lett. Magnfalt 103 2013 10.1063/1.4817669 Atom insertion into grain boundaries and stress generation in physically vapor deposited films 

  30. J. Appl. Phys. Chason 119 2016 10.1063/1.4946039 A kinetic model for stress generation in thin films grown from energetic vapor fluxes 

LOADING...
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로