$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Mesenchymal stem cells as therapeutic target of biophysical stimulation for the treatment of musculoskeletal disorders 원문보기

Journal of orthopaedic surgery and research, v.11, 2016년, pp.163 -   

Viganò, Marco (IRCCS Galeazzi Orthopaedic Institute, Via R. Galeazzi 4, 20161 Milan, Italy) ,  Sansone, Valerio (IRCCS Galeazzi Orthopaedic Institute, Via R. Galeazzi 4, 20161 Milan, Italy) ,  d’Agostino, Maria Cristina (ESWT Center, Rehabilitation Department, Humanitas Research Hospital, Rozzano, Milan, Italy) ,  Romeo, Pietro (IRCCS Galeazzi Orthopaedic Institute, Via R. Galeazzi 4, 20161 Milan, Italy) ,  Perucca Orfei, Carlotta (IRCCS Galeazzi Orthopaedic Institute, Via R. Galeazzi 4, 20161 Milan, Italy) ,  de Girolamo, Laura (IRCCS Galeazzi Orthopaedic Institute, Via R. Galeazzi 4, 20161 Milan, Italy)

Abstract AI-Helper 아이콘AI-Helper

BackgroundMusculoskeletal disorders are regarded as a major cause of worldwide morbidity and disability, and they result in huge costs for national health care systems. Traditional therapies frequently turned out to be poorly effective in treating bone, cartilage, and tendon disorders or joint degen...

주제어

참고문헌 (72)

  1. 1. Caplan AI Correa D The MSC: an injury drugstore Cell Stem Cell 2011 9 1 11 15 10.1016/j.stem.2011.06.008 21726829 

  2. 2. Dominici M Le Blanc K Mueller I Slaper-Cortenbach I Marini F Krause D Deans R Keating A Prockop D Horwitz E Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement Cytotherapy 2006 8 4 315 317 10.1080/14653240600855905 16923606 

  3. 3. de Girolamo L Lucarelli E Alessandri G Avanzini MA Bernardo ME Biagi E Brini AT D'Amico G Fagioli F Ferrero I Locatelli F Maccario R Marazzi M Parolini O Pessina A Torre ML Italian Mesenchymal Stem Cell Group Mesenchymal stem/stromal cells: a new “cells as drugs” paradigm. Efficacy and critical aspects in cell therapy Curr Pharm Des 2013 19 13 2459 2473 10.2174/1381612811319130015 23278600 

  4. 4. Bi Y Ehirchiou D Kilts TM Inkson CA Embree MC Sonoyama W Li L Leet AI Seo BM Zhang L Shi S Young MF Identification of tendon stem/progenitor cells and the role of the extracellular matrix in their niche Nat Med 2007 13 10 1219 1227 10.1038/nm1630 17828274 

  5. 5. Nakahara H Goldberg VM Caplan AI Culture-expanded human periosteal-derived cells exhibit osteochondral potential in vivo J Orthop Res 1991 9 4 465 476 10.1002/jor.1100090402 2045973 

  6. 6. Osyczka AM Nöth U Danielson KG Tuan RS Different osteochondral potential of clonal cell lines derived from adult human trabecular bone Ann N Y Acad Sci 2002 961 73 77 10.1111/j.1749-6632.2002.tb03054.x 12081870 

  7. 7. Zuk PA Zhu M Mizuno H Huang J Futrell JW Katz AJ Benhaim P Lorenz HP Hedrick MH Multilineage cells from human adipose tissue: implications for cell-based therapies Tissue Eng 2001 7 211 228 10.1089/107632701300062859 11304456 

  8. 8. De Bari C Dell'Accio F Tylzanowski P Luyten FP Multipotent mesenchymal stem cells from adult human synovial membrane Arthritis Rheum 2001 44 8 1928 1942 10.1002/1529-0131(200108)44:8 3.0.CO;2-P 11508446 

  9. 9. Lu HH Kofron MD El-Amin SF Attawia MA Laurencin CT In vitro bone formation using muscle-derived cells: a new paradigm for bone tissue engineering using polymer-bone morphogenetic protein matrices Biochem Biophys Res Commun 2003 305 4 882 889 10.1016/S0006-291X(03)00858-1 12767913 

  10. 10. Crisan M Yap S Casteilla L A perivascular origin for mesenchymal stem cells in multiple human organs Cell Stem Cell 2008 3 301 313 10.1016/j.stem.2008.07.003 18786417 

  11. 11. Corselli M Chen CW Sun B The tunica adventitia of human arteries and veins as a source of mesenchymal stem cells Stem Cells Dev 2012 21 1299 1308 10.1089/scd.2011.0200 21861688 

  12. 12. Jones BJ McTaggart SJ Immunosuppression by mesenchymal stromal cells: from culture to clinic Exp Hematol 2008 36 733 741 10.1016/j.exphem.2008.03.006 18474304 

  13. 13. Murray IR Corselli M Petrigliano FA Soo C Péault B Recent insights into the identity of mesenchymal stem cells: implications for orthopaedic applications Bone Joint J 2014 96-B 3 291 298 10.1302/0301-620X.96B3.32789 24589781 

  14. 14. Koh YG Jo SB Kwon OR Suh DS Lee SW Park SH Choi YJ Mesenchymal stem cell injections improve symptoms of knee osteoarthritis Arthroscopy 2013 29 748 755 10.1016/j.arthro.2012.11.017 23375182 

  15. 15. Quarto R Mastrogiacomo M Cancedda R Repair of large bone defects with the use of autologous bone marrow stromal cells N Engl J Med 2001 344 385 386 10.1056/NEJM200102013440516 11195802 

  16. 16. Deng Z Jin J Zhao J Xu H Cartilage defect treatments: with or without cells? Mesenchymal stem cells or chondrocytes? Traditional or matrix-assisted? A systematic review and meta-analyses Stem Cells Int 2016 2016 9201492 10.1155/2016/9201492 26839570 

  17. 17. de Girolamo L Kon E Filardo G Marmotti AG Soler F Peretti GM Vannini F Madry H Chubinskaya S Regenerative approaches for the treatment of early OA Knee Surg Sports Traumatol Arthrosc 2016 24 6 1826 1835 10.1007/s00167-016-4125-y 27120191 

  18. 18. Gaspar D Spanoudes K Holladay C Pandit A Zeugolis D Progress in cell-based therapies for tendon repair Adv Drug Deliv Rev 2015 84 240 256 10.1016/j.addr.2014.11.023 25543005 

  19. 19. Richardson SM Kalamegam G Pushparaj PN Matta C Memic A Khademhosseini A Mobasheri R Poletti FL Hoyland JA Mobasheri A Mesenchymal stem cells in regenerative medicine: focus on articular cartilage and intervertebral disc regeneration Methods 2016 99 69 80 10.1016/j.ymeth.2015.09.015 26384579 

  20. 20. Stanovici J Le Nail LR Brennan MA Vidal L Trichet V Rosset P Layrolle P Bone regeneration strategies with bone marrow stromal cells in orthopaedic surgery Curr Res Transl Med 2016 64 2 83 90 10.1016/j.retram.2016.04.006 27316391 

  21. 21. Orozco L Munar A Soler R Alberca M Soler F Huguet M Sentís J Sánchez A García-Sancho J Treatment of knee osteoarthritis with autologous mesenchymal stem cells: a pilot study Transplantation 2013 95 12 1535 1541 10.1097/TP.0b013e318291a2da 23680930 

  22. 22. de Girolamo L Bertolini G Cervellin M Sozzi G Volpi P Treatment of chondral defects of the knee with one step matrix-assisted technique enhanced by autologous concentrated bone marrow: in vitro characterisation of mesenchymal stem cells from iliac crest and subchondral bone Injury 2010 41 1172 1177 10.1016/j.injury.2010.09.027 20934693 

  23. 23. Hengartner NE Fiedler J Schrezenmeier H Huber-Lang M Brenner RE Crucial role of IL1beta and C3a in the in vitro-response of multipotent mesenchymal stromal cells to a inflammatory mediators of polytrauma PLoS ONE 2015 10 1 e0116772 10.1371/journal.pone.0116772 25562599 

  24. 24. Li D Pan X Zhao J Bone marrow mesenchymal stem cells suppress acute lung injury induced by lipopolysaccharide through inhibiting the Tlr2, 4/NF- κ B pathway in rats with multiple trauma Shock 2016 45 6 641 646 10.1097/SHK.0000000000000548 26717106 

  25. 25. Qi Y Jiang D Sindrilaru A TSG-6 released from intradermally injected mesenchymal stem cells accelerates wound healing and reduces tissue fibrosis inmurine full-thickness skin wounds J Invest Derm 2014 134 2 526 537 10.1038/jid.2013.328 23921952 

  26. 26. Markov MS Expanding use of pulsed electromagnetic field therapies Electromagn Biol Med 2007 26 3 257 274 10.1080/15368370701580806 17886012 

  27. 27. Chang K Hong-Shong Chang W Yu YH Shih C Pulsed electromagnetic field stimulation of bone marrow cells derived from ovariectomized rats affects osteoclast formation and local factor production Bioelectromagnetics 2004 25 2 134 141 10.1002/bem.10168 14735564 

  28. 28. Li JK Lin JC Liu HC Chang WH Cytokine release from osteoblasts in response to different intensities of pulsed electromagnetic field stimulation Electromagn Biol Med 2007 26 3 153 165 10.1080/15368370701572837 17886003 

  29. 29. Patterson TE Sakai Y Grabiner MD Ibiwoye M Midura RJ Zborowski M Wolfman A Exposure of murine cells to pulsed electromagnetic fields rapidly activates the mTOR signaling pathway Bioelectromagnetics 2006 27 7 535 544 10.1002/bem.20244 16715521 

  30. 30. Markov MS Myosin light chain phosphorylation modification depending on magnetic fields I Theoretical Electromag Biol Med 2004 23 55 74 10.1081/JBC-200026319 

  31. 31. Markov MS. Myosin phosphorylation—a plausible tool for studying biological windows. Ross Adey Memorial Lecture. In: Kostarakis P, editor. Proceedings of Third International Workshop on Biological Effects of EMF. Kos, Greece; 2004. pp. 1–9. 

  32. 32. Markov MS Pilla AA Blank M Ambient range sinusoidal and DC magnetic fields affect myosin phosphorylation in a cell-free preparation Electricity and Magnetism in Biology and Medicine 1993 San Francisco San Francisco Press 323 327 

  33. 33. Markov MS Pilla AA Static magnetic field modulation of myosin phosphorylation: calcium dependence in two enzyme preparations Bioelectrochem Bioenerg 1994 35 57 61 10.1016/0302-4598(94)87012-8 

  34. 34. Markov MS Pilla AA Frey A Modulation of cell-free myosin light chain phosphorylation with weak low frequency and static magnetic fields On the Nature of Electromagnetic Field Interactions with Biological Systems 1994 Austin R.G. Landes Co. 127 141 

  35. 35. Markov MS Ryaby JT Allen MJ Cleary SF Sowers AE Shillady DD Extremely weak AC and DC magnetic field significantly affect myosin phosphorylation Charge and Field Effects in Biosystems-3 1992 Boston Birkhauser 225 230 

  36. 36. Markov MS Wang S Pilla AA Effects of weak low frequency sinusoidal and DC magnetic fields on myosin phosphorylation in a cell-free preparation Bioelectrochem Bioenerg 1993 30 119 125 10.1016/0302-4598(93)80069-7 

  37. 37. Markov MS Muehsam DJ Pilla AA Allen MJ Cleary SF Sowers AE Modulation of cell-free myosin phosphorylation with pulsed radio frequency electromagnetic fields Charge and Field Effects in Biosystems 4 1994 New Jersey World Scientific 274 288 

  38. 38. Varani K De Mattei M Vincenzi F Gessi S Merighi S Pellati A Ongaro A Caruso A Cadossi R Borea PA Characterization of adenosine receptors in bovine chondrocytes and fibroblast-like synoviocytes exposed to low frequency low energy pulsed electromagnetic fields Osteoarthr Cartilage 2008 16 292 304 10.1016/j.joca.2007.07.004 

  39. 39. Wang Q Wu W Han X Zheng A Lei S Wu J Chen H He C Luo F Liu X Osteogenic differentiation of amniotic epithelial cells: synergism of pulsed electromagnetic field and biochemical stimuli BMC Musculoskelet Disord 2014 15 271 10.1186/1471-2474-15-271 25112311 

  40. 40. Li X Zhang M Bai L Bai W Xu W Zhu H Effects of 50 Hz pulsed electromagnetic fields on the growth and cell cycle arrest of mesenchymal stem cells: an in vitro study Electromagn Biol Med 2012 31 4 356 364 10.3109/15368378.2012.662194 22676915 

  41. 41. Kaivosoja E Sariola V Chen Y Konttinen YT The effect of pulsed electromagnetic fields and dehydroepiandrosterone on viability and osteo-induction of human mesenchymal stem cells J Tissue Eng Regen Med 2015 9 1 31 40 10.1002/term.1612 23038647 

  42. 42. Jansen JH van der Jagt OP Punt BJ Verhaar JA van Leeuwen JP Weinans H Jahr H Stimulation of osteogenic differentiation in human osteoprogenitor cells by pulsed electromagnetic fields: an in vitro study BMC Musculoskelet Disord 2010 11 188 10.1186/1471-2474-11-188 20731873 

  43. 43. Sun LY Hsieh DK Yu TC Chiu HT Lu SF Luo GH Kuo TK Lee OK Chiou TW Effect of pulsed electromagnetic field on the proliferation and differentiation potential of human bone marrow mesenchymal stem cells Bioelectromagnetics 2009 30 4 251 260 10.1002/bem.20472 19204973 

  44. 44. Ongaro A Pellati A Bagheri L Fortini C Setti S De Mattei M Pulsed electromagnetic fields stimulate osteogenic differentiation in human bone marrow and adipose tissue derived mesenchymal stem cells Bioelectromagnetics 2014 35 6 426 436 10.1002/bem.21862 25099126 

  45. 45. Ceccarelli G Bloise N Mantelli M Gastaldi G Fassina L De Angelis MG Ferrari D Imbriani M Visai L A comparative analysis of the in vitro effects of pulsed electromagnetic field treatment on osteogenic differentiation of two different mesenchymal cell lineages Biores Open Access 2013 2 4 283 294 10.1089/biores.2013.0016 23914335 

  46. 46. Petecchia L Sbrana F Utzeri R Vercellino M Usai C Visai L Vassalli M Gavazzo P Electro-magnetic field promotes osteogenic differentiation of BM-hMSCs through a selective action on Ca 2+ -related mechanisms Sci Rep 2015 5 13856 10.1038/srep13856 26364969 

  47. 47. Sollazzo V Traina GC DeMattei M Pellati A Pezzetti F Caruso A Responses of human MG-63 osteosarcoma cell line and human osteoblast-like cells to pulsed electromagnetic fields Bioelectromagnetics 1997 18 541 547 10.1002/(SICI)1521-186X(1997)18:8 3.0.CO;2-2 9383242 

  48. 48. Fitzsimmons RJ Farley JR Adey WR Baylink DJ Frequency dependence of increased cell proliferation, in vitro, in exposures to a low-amplitude, low-frequency electric field: evidence for dependence on increased mitogen activity released into culture medium J Cell Physiol 1989 139 586 591 10.1002/jcp.1041390319 2738103 

  49. 49. Tepper OM Callaghan MJ Chang EI Galiano RD Bhatt KA Baharestani S Gan J Simon B Hopper RA Levine JP Gurtner GC Electromagnetic fields increase in vitro and in vivo angiogenesis through endothelial release of FGF-2 Faseb J 2004 18 1231 1233 15208265 

  50. 50. Matsunaga S Sakou T Ijiri K Osteogenesis by pulsing electromagnetic fields (PEMFs): optimum stimulation setting In Vivo 1996 10 351 356 8797039 

  51. 51. Wang J Tang N Xiao Q Zhang L Li Y Li J Wang J Zhao Z Tan L Pulsed electromagnetic field may accelerate in vitro endochondral ossification Bioelectromagnetics 2015 36 1 35 44 10.1002/bem.21882 25358461 

  52. 52. Razavi S Salimi M Shahbazi-Gahrouei D Karbasi S Kermani S Extremely low-frequency electromagnetic field influences the survival and proliferation effect of human adipose derived stem cells Adv Biomed Res 2014 3 25 10.4103/2277-9175.124668 24592372 

  53. 53. Chen CH Lin YS Fu YC Wang CK Wu SC Wang GJ Eswaramoorthy R Wang YH Wang CZ Wang YH Lin SY Chang JK Ho ML Electromagnetic fields enhance chondrogenesis of human adipose-derived stem cells in a chondrogenic microenvironment in vitro J Appl Physiol (1985) 2013 114 5 647 655 10.1152/japplphysiol.01216.2012 23239875 

  54. 54. Esposito M Lucariello A Costanzo C Fiumarella A Giannini A Riccardi G Riccio I Differentiation of human umbilical cord-derived mesenchymal stem cells, WJ-MSCs, into chondrogenic cells in the presence of pulsed electromagnetic fields In Vivo 2013 27 4 495 500 23812219 

  55. 55. Stanco D Viganò M Perucca Orfei C Di Giancamillo A Peretti GM Lanfranchi L de Girolamo L Multidifferentiation potential of human mesenchymal stem cells from adipose tissue and hamstring tendons for musculoskeletal cell-based therapy Regen Med 2015 10 6 729 743 10.2217/rme.14.92 25565145 

  56. 56. de Girolamo L Stanco D Galliera E Viganò M Colombini A Setti S Vianello E Corsi Romanelli MM Sansone V Low frequency pulsed electromagnetic field affects proliferation, tissue-specific gene expression, and cytokines release of human tendon cells Cell Biochem Biophys 2013 66 3 697 708 10.1007/s12013-013-9514-y 23345006 

  57. 57. de Girolamo L Viganò M Galliera E Stanco D Setti S Marazzi MG Thiebat G Corsi Romanelli MM Sansone V In vitro functional response of human tendon cells to different dosages of low-frequency pulsed electromagnetic field Knee Surg Sports Traumatol Arthrosc 2015 23 11 3443 3453 10.1007/s00167-014-3143-x 24957914 

  58. 58. D'Agostino MC Craig K Tibalt E Respizzi S Shock wave as biological therapeutic tool: from mechanical stimulation to recovery and healing, through mechanotransduction Int J Surg 2015 24 Pt B 147 153 10.1016/j.ijsu.2015.11.030 26612525 

  59. 59. d’Agostino MC Frairia R Romeo P Amelio E Berta L Bosco V Gigliotti S Guerra C Messina S Messuri L Moretti B Notarnicola A Maccagnano G Russo S Saggini R Vulpiani MC Buselli P Extracorporeal shockwaves as regenerative therapy in orthopedic traumatology: a narrative review from basic research to clinical practice J Biol Regul Homeost Agents 2016 30 2 323 332 27358117 

  60. 60. Holfeld J Tepeköylü C Reissig C Lobenwein D Scheller B Kirchmair E Kozaryn R Albrecht-Schgoer K Krapf C Zins K Urbschat A Zacharowski K Grimm M Kirchmair R Paulus P Toll-like receptor 3 signalling mediates angiogenic response upon shock wave treatment of ischaemic muscle Cardiovasc Res 2016 109 2 331 343 10.1093/cvr/cvv272 26676850 

  61. 61. Wang FS Yang KD Chen RF Extracorporeal shock wave promotes growth and differentiation of bone marrow stromal cells towards osteoprogenitors associated with induction of TGF-β1 J Bone Joint Surg (Br) 2002 84 457 461 10.1302/0301-620X.84B3.11609 12002511 

  62. 62. Wang FS Wang CJ Chen MSC Superoxide mediates chock wave induction of ERK-dependent osteogenic transcription factor (CBFA1) and mesenchymal cell differentiation toward osteoprogenitors J Biolog Chem 2002 277 13 10931 10937 10.1074/jbc.M104587200 

  63. 63. Suhr F Delhasse Y Bungartz G Schmidt A Pfannkuche K Bloch W Cell biological effects of mechanical stimulations generated by focused extracorporeal shock wave applications on cultured human bone marrow stromal cells Stem Cell Res 2013 11 2 951 964 10.1016/j.scr.2013.05.010 23880536 

  64. 64. Aicher A Heeschen C Sasaki K Low-energy shock wave for enhancing recruitment of endothelial progenitor cells: a new modality to increase efficacy of cell therapy in chronic hind limb ischemia Circulation 2006 114 25 2823 2830 10.1161/CIRCULATIONAHA.106.628623 17145991 

  65. 65. Mittermayr R Antonic V Hartinger J Extracorporeal shock wave therapy (ESWT) for wound healing: technology, mechanisms, and clinical efficacy Wound Repair Regen 2012 20 4 456 465 22642362 

  66. 66. Moosavi-Nejad SF Hosseini SH Satoh M Takayama K Shock wave induced cytoskeletal and morphological deformations in a human renal carcinoma cell line Cancer Sci 2006 97 4 296 304 10.1111/j.1349-7006.2006.00172.x 16630122 

  67. 67. Berger M Frairia R Piacibello W Feasibility of cord blood stem cell manipulation with high-energy shock waves: an in vitro and in vivo study Exp Hematol 2005 33 11 1371 1387 10.1016/j.exphem.2005.08.002 16263422 

  68. 68. Leone L Raffa S Vetrano M Ranieri D Malisan F Scrofani C Vulpiani MC Ferretti A Torrisi MR Visco V Extracorporeal shock wave treatment (ESWT) enhances the in vitro-induced differentiation of human tendon-derived stem/progenitor cells (hTSPCs) Oncotarget 2016 7 6 6410 6423 26843618 

  69. 69. de Girolamo L Stanco D Galliera E Viganò M Lovati AB Marazzi MG Romeo P Sansone V Soft-focused extracorporeal shock waves increase the expression of tendon-specific markers and the release of anti-inflammatory cytokines in an adherent culture model of primary human tendon cells Ultrasound Med Biol 2014 40 6 1204 1215 10.1016/j.ultrasmedbio.2013.12.003 24631378 

  70. 70. Rinella L Marano F Berta L Bosco O Fraccalvieri M Fortunati N Frairia R Catalano MG Extracorporeal shock waves modulate myofibroblast differentiation of adipose-derived stem cells Wound Repair Regen 2016 24 2 275 286 10.1111/wrr.12410 26808471 

  71. 71. Catalano MG, Marano F, Rinella L, de Girolamo L, Bosco O, Fortunati N, Berta L, Frairia R. Extracorporeal shockwaves (ESWs) enhance the osteogenic medium-induced differentiation of adipose-derived stem cells into osteoblast-like cells. J Tissue Eng Regen Med. 2014; doi: 10.1002/term.1922. 

  72. 72. Schuh CM Heher P Weihs AM Banerjee A Fuchs C Gabriel C Wolbank S Mittermayr R Redl H Rünzler D Teuschl AH In vitro extracorporeal shock wave treatment enhances stemness and preserves multipotency of rat and human adipose-derived stem cells Cytotherapy 2014 16 12 1666 1678 10.1016/j.jcyt.2014.07.005 25174738 

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로