$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

The Use of Pulsed Electromagnetic Fields to Promote Bone Responses to Biomaterials In Vitro and In Vivo 원문보기

International journal of biomaterials, v.2018, 2018년, pp.8935750 -   

Galli, Carlo (Dep. of Medicine and Surgery, University of Parma, Italy) ,  Pedrazzi, Giuseppe (Dep. of Medicine and Surgery, University of Parma, Italy) ,  Mattioli-Belmonte, Monica (DISCLIMO, Department of Clinical and Molecular Sciences, Polytechnic University of Marche, Ancona, Italy) ,  Guizzardi, Stefano (Dep. of Medicine and Surgery, University of Parma, Italy)

Abstract AI-Helper 아이콘AI-Helper

Implantable biomaterials are extensively used to promote bone regeneration or support endosseous prosthesis in orthopedics and dentistry. Their use, however, would benefit from additional strategies to improve bone responses. Pulsed Electromagnetic Fields (PEMFs) have long been known to act on osteo...

참고문헌 (184)

  1. 1 Li J. J. Ebied M. Xu J. Zreiqat H. Current approaches to bone tissue engineering: the interface between biology and engineering Advanced Healthcare Materials 2018 7 6 1701061 10.1002/adhm.201701061 

  2. 2 Wang W. Yeung K. W. K. Bone grafts and biomaterials substitutes for bone defect repair: a review Bioactive Materials 2017 2 4 224 247 10.1016/j.bioactmat.2017.05.007 29744432 

  3. 3 Shanbhag S. Pandis N. Mustafa K. Nyengaard J. R. Stavropoulos A. Bone tissue engineering in oral peri-implant defects in preclinical in vivo research: A systematic review and meta-analysis Journal of Tissue Engineering and Regenerative Medicine 2018 12 1 e336 e349 2-s2.0-85019984882 10.1002/term.2412 28095650 

  4. 4 Rupp F. Liang L. Geis-Gerstorfer J. Scheideler L. Hüttig F. Surface characteristics of dental implants: A review Dental Materials 2018 34 1 40 57 2-s2.0-85030835617 10.1016/j.dental.2017.09.007 29029850 

  5. 5 Pearlin Nayak S. Manivasagam G. Sen D. Progress of regenerative therapy in orthopedics Current Osteoporosis Reports 2018 16 2 169 181 10.1007/s11914-018-0428-x 2-s2.0-85042603069 29488062 

  6. 6 Li Z. Müller R. Ruffoni D. Bone remodeling and mechanobiology around implants: Insights from small animal imaging Journal of Orthopaedic Research 2017 36 2 584 593 10.1002/jor.23758 28975660 

  7. 7 Kuttappan S. Mathew D. Nair M. B. Biomimetic composite scaffolds containing bioceramics and collagen/gelatin for bone tissue engineering - A mini review International Journal of Biological Macromolecules 2016 93 1390 1401 2-s2.0-84994745705 10.1016/j.ijbiomac.2016.06.043 27316767 

  8. 8 Dorozhkin S. V. Calcium orthophosphate-based bioceramics Materials 2013 6 9 3840 3942 10.3390/ma6093840 2-s2.0-84884573729 28788309 

  9. 9 Eliaz N. Metoki N. Calcium Phosphate Bioceramics: A Review of Their History, Structure, Properties, Coating Technologies and Biomedical Applications Materials 2017 10 4 p. 334 10.3390/ma10040334 

  10. 10 Murphy W. L. McDevitt T. C. Engler A. J. Materials as stem cell regulators Nature Materials 2014 13 6 547 557 2-s2.0-84901242248 10.1038/nmat3937 24845994 

  11. 11 Kumar A. Placone J. K. Engler A. J. Understanding the extracellular forces that determine cell fate and maintenance Development 2017 144 23 4261 4270 10.1242/dev.158469 29183939 

  12. 12 Nabiyouni M. Brückner T. Zhou H. Gbureck U. Bhaduri S. B. Magnesium-based bioceramics in orthopedic applications Acta Biomaterialia 2018 66 23 43 2-s2.0-85037627783 10.1016/j.actbio.2017.11.033 29197578 

  13. 13 Begam H. Nandi S. K. Kundu B. Chanda A. Strategies for delivering bone morphogenetic protein for bone healing Materials Science and Engineering C: Materials for Biological Applications 2017 70 856 869 10.1016/j.msec.2016.09.074 27770964 

  14. 14 Ribeiro C. Sencadas V. Correia D. M. Lanceros-Méndez S. Piezoelectric polymers as biomaterials for tissue engineering applications Colloids and Surfaces B: Biointerfaces 2015 136 46 55 2-s2.0-84941567857 10.1016/j.colsurfb.2015.08.043 26355812 

  15. 15 Jahan K. Tabrizian M. Composite biopolymers for bone regeneration enhancement in bony defects Biomaterials Science 2016 4 1 25 39 2-s2.0-84950341409 10.1039/C5BM00163C 26317131 

  16. 16 Gibbs D. M. R. Black C. R. M. Dawson J. I. Oreffo R. O. C. A review of hydrogel use in fracture healing and bone regeneration Journal of Tissue Engineering and Regenerative Medicine 2016 10 3 187 198 2-s2.0-84961211445 10.1002/term.1968 25491789 

  17. 17 Arakawa C. Ng R. Tan S. Kim S. Wu B. Lee M. Photopolymerizable chitosan–collagen hydrogels for bone tissue engineering Journal of Tissue Engineering and Regenerative Medicine 2017 11 1 164 174 2-s2.0-84898724007 10.1002/term.1896 24771649 

  18. 18 Turnbull G. Clarke J. Picard F. 3D bioactive composite scaffolds for bone tissue engineering Bioactive Materials 2018 3 3 278 314 10.1016/j.bioactmat.2017.10.001 29744467 

  19. 19 Martins R. Cestari T. M. Arantes R. V. N. Osseointegration of zirconia and titanium implants in a rabbit tibiae model evaluated by microtomography, histomorphometry and fluorochrome labeling analyses Journal of Periodontal Research 2018 53 2 210 221 2-s2.0-85042461770 10.1111/jre.12508 29044523 

  20. 20 Sivaraman K. Chopra A. Narayan A. I. Balakrishnan D. Is zirconia a viable alternative to titanium for oral implant? A critical review Journal of Prosthodontic Research 2018 62 2 121 133 2-s2.0-85027463084 10.1016/j.jpor.2017.07.003 28827030 

  21. 21 Bosshardt D. D. Chappuis V. Buser D. Osseointegration of titanium, titanium alloy and zirconia dental implants: current knowledge and open questions Periodontology 2000 2017 73 1 22 40 2-s2.0-85006827238 10.1111/prd.12179 28000277 

  22. 22 Kellesarian S. V. Malignaggi V. R. Kellesarian T. V. Bashir Ahmed H. Javed F. Does incorporating collagen and chondroitin sulfate matrix in implant surfaces enhance osseointegration? A systematic review and meta-analysis International Journal of Oral and Maxillofacial Surgery 2018 47 2 241 251 2-s2.0-85032742004 10.1016/j.ijom.2017.10.010 29096932 

  23. 23 Rao S. H. Harini B. Shadamarshan R. P. K. Balagangadharan K. Selvamurugan N. Natural and synthetic polymers/bioceramics/bioactive compounds-mediated cell signalling in bone tissue engineering International Journal of Biological Macromolecules 2018 110 88 96 2-s2.0-85029476279 10.1016/j.ijbiomac.2017.09.029 28917940 

  24. 24 Iskander M. F. Electromagnetic Fields and Waves 2013 Long Grove, IL, USA Waveland Press http://cds.cern.ch/record/1529891 

  25. 25 Birks L. E. Struchen B. Eeftens M. Spatial and temporal variability of personal environmental exposure to radio frequency electromagnetic fields in children in Europe Environment International 2018 117 204 214 10.1016/J.ENVINT.2018.04.026 29754001 

  26. 26 Wertheimer N. Leeper E. Electrical wiring configurations and childhood cancer American Journal of Epidemiology 1979 109 3 273 284 10.1093/oxfordjournals.aje.a112681 2-s2.0-0018686564 453167 

  27. 27 Wertheimer N. Leeper E. Adult cancer related to electrical wires near the home International Journal of Epidemiology 1982 11 4 345 355 10.1093/ije/11.4.345 7152787 

  28. 28 Robinette C. D. Silverman C. Jablon S. Effects upon health of occupational exposure to microwave radiation (radar) American Journal of Epidemiology 1980 112 1 39 53 7395854 

  29. 29 Valberg P. A. Kavet R. Rafferty C. N. Can low-level 50/60 hz electric and magnetic fields cause biological effects? Journal of Radiation Research 1997 148 1 2 21 10.2307/3579533 

  30. 30 Pall M. L. Microwave frequency electromagnetic fields (EMFs) produce widespread neuropsychiatric effects including depression Journal of Chemical Neuroanatomy 2016 75 43 51 2-s2.0-84941702946 10.1016/j.jchemneu.2015.08.001 26300312 

  31. 31 Pall M. L. Wi-Fi is an important threat to human health Environmental Research 2018 164 405 416 2-s2.0-85044159990 10.1016/j.envres.2018.01.035 29573716 

  32. 32 Hug K. Röösli M. Therapeutic effects of whole-body devices applying pulsed electromagnetic fields (PEMF): A systematic literature review Bioelectromagnetics 2012 33 2 95 105 2-s2.0-84855342328 10.1002/bem.20703 21938735 

  33. 33 Zhang X. Zhang J. Qu X. Wen J. Effects of Different Extremely Low-Frequency Electromagnetic Fields on Osteoblasts Electromagnetic Biology and Medicine 2007 26 3 167 177 10.1080/15368370701580756 17886004 

  34. 34 Pchelintseva E. Djamgoz M. B. A. Mesenchymal stem cell differentiation: Control by calcium-activated potassium channels Journal of Cellular Physiology 2017 233 5 3755 3768 10.1002/jcp.26120 2-s2.0-85028926458 28776687 

  35. 35 Zhang X. Liu X. Pan L. Lee I. Magnetic fields at extremely low-frequency (50 Hz, 0.8 mT) can induce the uptake of intracellular calcium levels in osteoblasts Biochemical and Biophysical Research Communications 2010 396 3 662 666 2-s2.0-77953232905 10.1016/j.bbrc.2010.04.154 20438704 

  36. 36 Tong J. Sun L. Zhu B. Pulsed electromagnetic fields promote the proliferation and differentiation of osteoblasts by reinforcing intracellular calcium transients Bioelectromagnetics 2017 38 7 541 549 2-s2.0-85027522382 10.1002/bem.22076 28833306 

  37. 37 Kuan-Jung Li J. Cheng-An Lin J. Liu H. Comparison of ultrasound and electromagnetic field effects on osteoblast growth Ultrasound in Medicine & Biology 2006 32 5 769 775 10.1016/j.ultrasmedbio.2006.01.017 16677936 

  38. 38 Wu S. Yu Q. Lai A. Tian J. Pulsed electromagnetic field induces Ca2+ -dependent osteoblastogenesis in C3H10T1/2 mesenchymal cells through the Wnt-Ca 2+ /Wnt- β -catenin signaling pathway Biochemical and Biophysical Research Communications 2018 503 2 715 721 10.1016/j.bbrc.2018.06.066 29909008 

  39. 39 Varani K. Vincenzi F. Ravani A. Adenosine receptors as a biological pathway for the anti-inflammatory and beneficial effects of low frequency low energy pulsed electromagnetic fields Mediators of Inflammation 2017 2017 11 2740963 10.1155/2017/2740963 

  40. 40 Yan J. Zhou J. Ma H. Pulsed electromagnetic fields promote osteoblast mineralization and maturation needing the existence of primary cilia Molecular and Cellular Endocrinology 2015 404 132 140 10.1016/j.mce.2015.01.031 25661534 

  41. 41 Xie Y.-F. Shi W.-G. Zhou J. Pulsed electromagnetic fields stimulate osteogenic differentiation and maturation of osteoblasts by upregulating the expression of BMPRII localized at the base of primary cilium Bone 2016 93 22 32 10.1016/j.bone.2016.09.008 27622883 

  42. 42 Ehnert S. Fentz A. Schreiner A. Extremely low frequency pulsed electromagnetic fields cause antioxidative defense mechanisms in human osteoblasts via induction of •O2− and H2O2 Scientific Reports 2017 7 1 14544 10.1038/s41598-017-14983-9 

  43. 43 Lohmann C. H. Schwartz Z. Liu Y. Pulsed electromagnetic field stimulation of MG63 osteoblast-like cells affects differentiation and local factor production Journal of Orthopaedic Research 2000 18 4 637 646 10.1002/jor.1100180417 2-s2.0-0034232667 11052501 

  44. 44 Sakai Y. Patterson T. E. Ibiwoye M. O. Exposure of mouse preosteoblasts to pulsed electromagnetic fields reduces the amount of mature, type I collagen in the extracellular matrix Journal of Orthopaedic Research 2006 24 2 242 253 2-s2.0-33645080703 10.1002/jor.20012 16435357 

  45. 45 Bodamyali T. Bhatt B. Hughes F. J. Pulsed electromagnetic fields simultaneously induce osteogenesis and upregulate transcription of bone morphogenetic proteins 2 and 4 in rat osteoblasts in vitro Biochemical and Biophysical Research Communications 1998 250 2 458 461 2-s2.0-0032544350 10.1006/bbrc.1998.9243 9753652 

  46. 46 Wang Y. Pu X. Shi W. Pulsed electromagnetic fields promote bone formation by activating the sAC-cAMP-PKA-CREB signaling pathway Journal of Cellular Physiology 2018 10.1002/jcp.27098 

  47. 47 Daish C. Blanchard R. Fox K. Pivonka P. Pirogova E. The Application of Pulsed Electromagnetic Fields (PEMFs) for Bone Fracture Repair: Past and Perspective Findings Annals of Biomedical Engineering 2018 46 4 525 542 2-s2.0-85040780052 10.1007/s10439-018-1982-1 29356996 

  48. 48 Huegel J. Choi D. S. Nuss C. A. Effects of pulsed electromagnetic field therapy at different frequencies and durations on rotator cuff tendon-to-bone healing in a rat model Journal of Shoulder and Elbow Surgery 2018 27 3 553 560 2-s2.0-85034788282 10.1016/j.jse.2017.09.024 29174271 

  49. 49 Bilgin H. M. Çelik F. Gem M. Effects of local vibration and pulsed electromagnetic field on bone fracture: A comparative study Bioelectromagnetics 2017 38 5 339 348 2-s2.0-85014089184 10.1002/bem.22043 28236321 

  50. 50 Sarker A. B. Nashimuddin A. N. Islam K. M. Effect of PEMF on fresh fracture-healing in rat tibia Bangladesh Medical Research Council Bulletin 1993 19 3 103 112 8031284 

  51. 51 Taylor K. F. Inoue N. Rafiee B. Tis J. E. McHale K. A. Chao E. Y. S. Effect of pulsed electromagnetic fields on maturation of regenerate bone in a rabbit limb lengthening model Journal of Orthopaedic Research 2006 24 1 2 10 2-s2.0-33644863912 10.1002/jor.20014 16419963 

  52. 52 Fredericks D. C. Nepola J. V. Baker J. T. Abbott J. Simon B. Effects of pulsed electromagnetic fields on bone healing in a rabbit tibial osteotomy model Journal of Orthopaedic Trauma 2000 14 2 93 100 2-s2.0-0034133504 10.1097/00005131-200002000-00004 10716379 

  53. 53 Midura R. J. Ibiwoye M. O. Powell K. A. Pulsed electromagnetic field treatments enhance the healing of fibular osteotomies Journal of Orthopaedic Research 2005 23 5 1035 1046 2-s2.0-24344488377 10.1016/j.orthres.2005.03.015 15936919 

  54. 54 Landry P. S. Sadasivan K. K. Marino A. A. Albright J. A. Electromagnetic Fields Can Affect Osteogenesis by Increasing the Rate of Differentiation Clinical Orthopaedics and Related Research 1997 338 262 270 10.1097/00003086-199705000-00035 

  55. 55 Takano-Yamamoto T. Kawakami M. Sakuda M. Effect of a pulsing electromagnetic field on demineralized bone-matrix-induced bone formation in a bony defect in the premaxilla of rats Journal of Dental Research 1992 71 12 1920 1925 10.1177/00220345920710121301 2-s2.0-0027017095 1452895 

  56. 56 Kapi E. Bozkurt M. Selcuk C. T. Comparison of effects of pulsed electromagnetic field stimulation on platelet-rich plasma and bone marrow stromal stem cell using rat zygomatic bone defect model Annals of Plastic Surgery 2015 75 5 565 571 2-s2.0-84944405897 10.1097/SAP.0000000000000160 26461101 

  57. 57 Liu C. Zhang Y. Fu T. Effects of electromagnetic fields on bone loss in hyperthyroidism rat model Bioelectromagnetics 2017 38 2 137 150 2-s2.0-85008350863 10.1002/bem.22022 27973686 

  58. 58 Jing D. Shen G. Huang J. Circadian rhythm affects the preventive role of pulsed electromagnetic fields on ovariectomy-induced osteoporosis in rats Bone 2010 46 2 487 495 2-s2.0-74249092931 10.1016/j.bone.2009.09.021 19782781 

  59. 59 Jiang Y. Gou H. Wang S. Zhu J. Tian S. Yu L. Effect of pulsed electromagnetic field on bone formation and lipid metabolism of glucocorticoid-induced osteoporosis rats through canonical wnt signaling pathway Evidence-Based Complementary and Alternative Medicine 2016 2016 13 4927035 10.1155/2016/4927035 

  60. 60 Zhou J. He H. Yang L. Effects of pulsed electromagnetic fields on bone mass and Wnt/ β -catenin signaling pathway in ovariectomized rats Archives of Medical Research 2012 43 4 274 282 10.1016/j.arcmed.2012.06.002 2-s2.0-84864104885 22704852 

  61. 61 Zhou J. Chen S. Guo H. Pulsed electromagnetic field stimulates osteoprotegerin and reduces RANKL expression in ovariectomized rats Rheumatology International 2013 33 5 1135 1141 10.1007/s00296-012-2499-9 2-s2.0-84877947320 22948539 

  62. 62 Zhou J. Liao Y. Zeng Y. Xie H. Fu C. Li N. Effect of intervention initiation timing of pulsed electromagnetic field on ovariectomy-induced osteoporosis in rats Bioelectromagnetics 2017 38 6 456 465 2-s2.0-85019470275 10.1002/bem.22059 28510268 

  63. 63 Zhou J. Liao Y. Xie H. Effects of combined treatment with ibandronate and pulsed electromagnetic field on ovariectomy-induced osteoporosis in rats Bioelectromagnetics 2017 38 1 31 40 2-s2.0-84995666164 10.1002/bem.22012 27711964 

  64. 64 Jing D. Li F. Jiang M. Pulsed electromagnetic fields improve bone microstructure and strength in ovariectomized rats through a Wnt/Lrp5/ β -catenin signaling-associated mechanism PLoS ONE 2013 8 11 10.1371/journal.pone.0079377 e79377 2-s2.0-84893641445 

  65. 65 Lei T. Liang Z. Li F. Pulsed electromagnetic fields (PEMF) attenuate changes in vertebral bone mass, architecture and strength in ovariectomized mice Bone 2018 108 10 19 2-s2.0-85037996626 10.1016/j.bone.2017.12.008 29229438 

  66. 66 Chang K. Chang W. H.-S. Pulsed electromagnetic fields prevent osteoporosis in an ovariectomized female rat model: a prostaglandin E2-associated process Bioelectromagnetics 2003 24 3 189 198 10.1002/bem.10078 2-s2.0-0038495599 12669302 

  67. 67 Jing D. Cai J. Wu Y. Pulsed electromagnetic fields partially preserve bone mass, microarchitecture, and strength by promoting bone formation in hindlimb-suspended rats Journal of Bone and Mineral Research 2014 29 10 2250 2261 10.1002/jbmr.2260 2-s2.0-84904673257 24753111 

  68. 68 Li B. Bi J. Li W. Effects of pulsed electromagnetic fields on histomorphometry and osteocalcin in disuse osteoporosis rats Technology and Health Care 2017 25 S1 13 20 10.3233/THC-171301 28582887 

  69. 69 Shen W.-W. Zhao J.-H. Pulsed electromagnetic fields stimulation affects BMD and local factor production of rats with disuse osteoporosis Bioelectromagnetics 2010 31 2 113 119 10.1002/bem.20535 2-s2.0-75649094153 19670410 

  70. 70 Li J. Zeng Z. Zhao Y. Effects of low-intensity pulsed electromagnetic fields on bone microarchitecture, mechanical strength and bone turnover in type 2 diabetic db/db mice Scientific Reports 2017 7 1 10834 10.1038/s41598-017-11090-7 

  71. 71 Androjna C. Fort B. Zborowski M. Midura R. J. Pulsed electromagnetic field treatment enhances healing callus biomechanical properties in an animal model of osteoporotic fracture Bioelectromagnetics 2014 35 6 396 405 2-s2.0-84906086206 10.1002/bem.21855 24764277 

  72. 72 Yang X. He H. Zhou Y. Pulsed electromagnetic field at different stages of knee osteoarthritis in rats induced by low-dose monosodium iodoacetate: Effect on subchondral trabecular bone microarchitecture and cartilage degradation Bioelectromagnetics 2017 38 3 227 238 2-s2.0-85008517881 10.1002/bem.22028 28026095 

  73. 73 Canè V. Botti P. Farneti D. Soana S. Electromagnetic stimulation of bone repair: A histomorphometric study Journal of Orthopaedic Research 1991 9 6 908 917 2-s2.0-0025993404 10.1002/jor.1100090618 1919855 

  74. 74 Cane V. Botti P. Soana S. Pulsed magnetic fields improve osteoblast activity during the repair of an experimental osseous defect Journal of Orthopaedic Research 1993 11 5 664 670 2-s2.0-0027669988 10.1002/jor.1100110508 8410466 

  75. 75 Garland D. E. Adkins R. H. Matsuno N. N. Stewart C. A. The effect of pulsed electromagnetic fields on osteoporosis at the knee in individuals with spinal cord injury The Journal of Spinal Cord Medicine 1999 22 4 239 245 2-s2.0-0033289173 10.1080/10790268.1999.11719576 10751127 

  76. 76 Tabrah F. L. Ross P. Hoffmeier M. Gilbert F. Jr. Clinical Report on Long-Term Bone Density after Short-Term EMF Application Bioelectromagnetics 1998 19 2 75 78 2-s2.0-0031601049 10.1002/(SICI)1521-186X(1998)19:2 3.0.CO;2-0 9492162 

  77. 77 Tabrah F. Hoffmeier M. Gilbert F. Batkin S. Bassett C. A. L. Bone density changes in osteoporosis‐prone women exposed to pulsed electromagnetic fields (PEMFs) Journal of Bone and Mineral Research 1990 5 5 437 442 2-s2.0-0025327598 10.1002/jbmr.5650050504 2195843 

  78. 78 Bassett C. A. Pilla A. A. Pawluk R. J. A non-operative salvage of surgically-resistant pseudarthroses and non-unions by pulsing electromagnetic fields Clinical Orthopaedics and Related Research 1977 124 128 143 10.1097/00003086-197705000-00017 

  79. 79 Bassett C. A. Mitchell S. N. Gaston S. R. Treatment of ununited tibial diaphyseal fractures with pulsing electromagnetic fields. The Journal of Bone & Joint Surgery 1981 63 4 511 523 10.2106/00004623-198163040-00001 7217117 

  80. 80 Simonis R. B. Parnell E. J. Ray P. S. Peacock J. L. Electrical treatment of tibial non-union: A prospective, randomised, double-blind trial Injury 2003 34 5 357 362 2-s2.0-0037403742 10.1016/S0020-1383(02)00209-7 12719164 

  81. 81 Lazovic M. Kocic M. Dimitrijevic L. Stankovic I. Spalevic M. Ciric T. Pulsed electromagnetic field during cast immobilization in postmenopausal women with Colles’ fracture Srpski Arhiv za Celokupno Lekarstvo 2012 140 9-10 619 624 10.2298/SARH1210619L 23289279 

  82. 82 Cheing G. L. Y. Wan J. W. H. Kai Lo S. Ice and pulsed electromagnetic field to reduce pain and swelling after distal radius fractures Journal of Rehabilitation Medicine 2005 37 6 372 377 2-s2.0-29244451040 10.1080/16501970510041055 16287669 

  83. 83 Hannemann P. F. Essers B. A. Schots J. P. Dullaert K. Poeze M. Brink P. R. Functional outcome and cost-effectiveness of pulsed electromagnetic fields in the treatment of acute scaphoid fractures: a cost-utility analysis BMC Musculoskeletal Disorders 2015 16 1 p. 84 10.1186/s12891-015-0541-2 25880388 

  84. 84 Faldini C. Cadossi M. Luciani D. Betti E. Chiarello E. Giannini S. Electromagnetic bone growth stimulation in patients with femoral neck fractures treated with screws: Prospective randomized double-blind study Current Orthopaedic Practice 2010 21 3 282 287 2-s2.0-77953009027 10.1097/BCO.0b013e3181d4880f 

  85. 85 Adie S. Harris I. A. Naylor J. M. Pulsed Electromagnetic Field Stimulation for Acute Tibial Shaft Fractures The Journal of Bone and Joint Surgery-American Volume 2011 93 17 1569 1576 10.2106/JBJS.J.00869 21915570 

  86. 86 Assiotis A. Sachinis N. P. Chalidis B. E. Pulsed electromagnetic fields for the treatment of tibial delayed unions and nonunions. A prospective clinical study and review of the literature Journal of Orthopaedic Surgery and Research 2012 7 1 p. 24 10.1186/1749-799X-7-24 2-s2.0-84861953085 22681718 

  87. 87 Shi H. Xiong J. Chen Y. Early application of pulsed electromagnetic field in the treatment of postoperative delayed union of long-bone fractures: a prospective randomized controlled study BMC Musculoskeletal Disorders 2013 14 1 p. 35 10.1186/1471-2474-14-35 

  88. 88 Streit A. Watson B. C. Granata J. D. Effect on Clinical Outcome and Growth Factor Synthesis With Adjunctive Use of Pulsed Electromagnetic Fields for Fifth Metatarsal Nonunion Fracture Foot & Ankle International 2016 37 9 919 923 10.1177/1071100716652621 27287343 

  89. 89 Refai H. Radwan D. Hassanien N. Radiodensitometric Assessment of the Effect of Pulsed Electromagnetic Field Stimulation Versus Low Intensity Laser Irradiation on Mandibular Fracture Repair: A Preliminary Clinical Trial Journal of Maxillofacial and Oral Surgery 2014 13 4 451 457 10.1007/s12663-013-0551-2 26225010 

  90. 90 Abdelrahim A. Hassanein H. R. Dahaba M. Effect of pulsed electromagnetic field on healing of mandibular fracture: a preliminary clinical study Journal of Oral and Maxillofacial Surgery 2011 69 6 1708 1717 10.1016/j.joms.2010.10.013 2-s2.0-79956373925 21277067 

  91. 91 Barker A. T. Dixon R. A. Sharrard W. J. W. Sutcliffe M. L. Pulsed Magnetic Field Therapy for Tibial Non-Union. Interim Results of a Double-Blind Trial The Lancet 1984 1 8384 994 996 10.1016/S0140-6736(84)92329-8 2-s2.0-0021321204 

  92. 92 Scott G. King J. B. A prospective, double-blind trial of electrical capacitive coupling in the treatment of non-union of long bones The Journal of Bone & Joint Surgery 1994 76 6 820 826 10.2106/00004623-199406000-00005 8200888 

  93. 93 Sharrard W. A double-blind trial of pulsed electromagnetic fields for delayed union of tibial fractures The Journal of Bone & Joint Surgery 1990 72 3 347 355 10.1302/0301-620X.72B3.2187877 2187877 

  94. 94 Liu C. Yu J. Yang Y. Effect of 1 mT sinusoidal electromagnetic fields on proliferation and osteogenic differentiation of rat bone marrow mesenchymal stromal cells Bioelectromagnetics 2013 34 6 453 464 10.1002/bem.21791 23589052 

  95. 95 Li K. Ma S. Li Y. Effects of PEMF exposure at different pulses on osteogenesis of MC3T3-E1 cells Archives of Oral Biology 2014 59 9 921 927 10.1016/j.archoralbio.2014.05.015 24907521 

  96. 96 Markov M. S. Magnetic Field Therapy: A Review Electromagnetic Biology and Medicine 2007 26 1 1 23 10.1080/15368370600925342 17454079 

  97. 97 Lei T. Li F. Liang Z. Effects of four kinds of electromagnetic fields (EMF) with different frequency spectrum bands on ovariectomized osteoporosis in mice Scientific Reports 2017 7 1 p. 553 10.1038/s41598-017-00668-w 

  98. 98 Zhou J. Wang J.-Q. Ge B.-F. Different electromagnetic field waveforms have different effects on proliferation, differentiation and mineralization of osteoblasts in vitro Bioelectromagnetics 2014 35 1 30 38 2-s2.0-84897051380 10.1002/bem.21794 23775573 

  99. 99 Hubbard D. K. Dennis R. Pain relief and tissue healing using pemf therapy: a review of stimulation waveform effects Asia Health Care Journal 2012 1 2 26 35 

  100. 100 Griffin X. L. Costa M. L. Parsons N. Smith N. Electromagnetic field stimulation for treating delayed union or non-union of long bone fractures in adults Cochrane Database of Systematic Reviews 2011 10.1002/14651858.CD008471 

  101. 101 Handoll H. H. Elliott J. Rehabilitation for distal radial fractures in adults Cochrane Database of Systematic Reviews 2015 10.1002/14651858.CD003324.pub3 

  102. 102 Hannemann P. F. W. Mommers E. H. H. Schots J. P. M. Brink P. R. G. Poeze M. The effects of low-intensity pulsed ultrasound and pulsed electromagnetic fields bone growth stimulation in acute fractures: a systematic review and meta-analysis of randomized controlled trials Archives of Orthopaedic and Trauma Surgery 2014 134 8 1093 1106 10.1007/s00402-014-2014-8 2-s2.0-84907609949 24895156 

  103. 103 Massari L. Caruso G. Sollazzo V. Pulsed electromagnetic fields and low intensity pulsed ultrasound in bone tissue Clinical Cases in Mineral Bone Metabolism 2009 6 2 149 154 22461165 

  104. 104 Martino C. F. Belchenko D. Ferguson V. Nielsen-Preiss S. Qi H. J. The effects of pulsed electromagnetic fields on the cellular activity of SaOS-2 cells Bioelectromagnetics 2008 29 2 125 132 2-s2.0-38949086548 10.1002/bem.20372 18027839 

  105. 105 Hannay G. Leavesley D. Pearcy M. Timing of pulsed electromagnetic field stimulation does not affect the promotion of bone cell development Bioelectromagnetics 2005 26 8 670 676 2-s2.0-27744515480 10.1002/bem.20166 16189825 

  106. 106 Noriega-Luna B. Sabanero M. Sosa M. Avila-Rodriguez M. Influence of pulsed magnetic fields on the morphology of bone cells in early stages of growth Micron 2011 42 6 600 607 10.1016/j.micron.2011.02.005 2-s2.0-79955589097 21474322 

  107. 107 Sollazzo V. Palmieri A. Pezzetti F. Massari L. Carinci F. Effects of pulsed electromagnetic fields on human osteoblastlike cells (MG-63): a pilot study Clinical Orthopaedics and Related Research 2010 468 8 2260 2277 10.1007/s11999-010-1341-5 2-s2.0-77954704442 20387020 

  108. 108 De Mattei M. Gagliano N. Moscheni C. Changes in polyamines, c-myc and c-fos gene expression in osteoblast-like cells exposed to pulsed electromagnetic fields Bioelectromagnetics 2005 26 3 207 214 2-s2.0-16244372680 10.1002/bem.20068 15768429 

  109. 109 Soda A. Ikehara T. Kinouchi Y. Yoshizaki K. Effect of exposure to an extremely low frequency-electromagnetic field on the cellular collagen with respect to signaling pathways in osteoblast-like cells The Journal of Medical Investigation 2008 55 2 267 278 10.2152/jmi.55.267 18797142 

  110. 110 Zhai M. Jing D. Tong S. Pulsed electromagnetic fields promote in vitro osteoblastogenesis through a Wnt/ β -catenin signaling-associated mechanism Bioelectromagnetics 2016 37 3 152 162 2-s2.0-84961214760 10.1002/bem.21961 

  111. 111 Patterson T. E. Sakai Y. Grabiner M. D. Exposure of murine cells to pulsed electromagnetic fields rapidly activates the mTOR signaling pathway Bioelectromagnetics 2006 27 7 535 544 2-s2.0-33745434226 10.1002/bem.20244 16715521 

  112. 112 Diniz P. Soejima K. Ito G. Nitric oxide mediates the effects of pulsed electromagnetic field stimulation on the osteoblast proliferation and differentiation Nitric Oxide: Biology and Chemistry 2002 7 1 18 23 10.1016/S1089-8603(02)00004-6 12175815 

  113. 113 Diniz P. Shomura K. Soejima K. Ito G. Effects of Pulsed Electromagnetic Field (PEMF) Stimulation on Bone Tissue Like Formation Are Dependent on the Maturation Stages of the Osteoblasts Bioelectromagnetics 2002 23 5 398 405 2-s2.0-0036655035 10.1002/bem.10032 12111759 

  114. 114 Lin C.-C. Lin R.-W. Chang C.-W. Wang G.-J. Lai K.-A. Single-pulsed electromagnetic field therapy increases osteogenic differentiation through Wnt signaling pathway and sclerostin downregulation Bioelectromagnetics 2015 36 7 494 505 2-s2.0-84941874204 10.1002/bem.21933 26364557 

  115. 115 Selvamurugan N. Kwok S. Vasilov A. Jefcoat S. C. Partridge N. C. Effects of BMP-2 and pulsed electromagnetic field (PEMF) on rat primary osteoblastic cell proliferation and gene expression Journal of Orthopaedic Research 2007 25 9 1213 1220 2-s2.0-34548382710 10.1002/jor.20409 17503520 

  116. 116 Hopper R. A. Verhalen J. P. Tepper O. T. Osteoblasts stimulated with pulsed electromagnetic fields increase HUVEC proliferation via a VEGF-A independent mechanism Bioelectromagnetics 2009 30 3 189 197 2-s2.0-65349089024 10.1002/bem.20459 19194859 

  117. 117 Barnaba S. Papalia R. Ruzzini L. Sgambato A. Maffulli N. Denaro V. Effect of pulsed electromagnetic fields on human osteoblast cultures Physiotherapy Research International 2013 18 2 109 114 2-s2.0-84878788639 10.1002/pri.1536 22991203 

  118. 118 Ehnert S. van Griensven M. Unger M. Co-Culture with Human Osteoblasts and Exposure to Extremely Low Frequency Pulsed Electromagnetic Fields Improve Osteogenic Differentiation of Human Adipose-Derived Mesenchymal Stem Cells International Journal of Molecular Sciences 2018 19 4 p. 994 10.3390/ijms19040994 

  119. 119 Ehnert S. Falldorf K. Fentz A.-K. Primary human osteoblasts with reduced alkaline phosphatase and matrix mineralization baseline capacity are responsive to extremely low frequency pulsed electromagnetic field exposure - Clinical implication possible Bone Reports 2015 3 48 56 2-s2.0-84955490275 10.1016/j.bonr.2015.08.002 28377966 

  120. 120 Ceccarelli G. Bloise N. Mantelli M. A comparative analysis of the in vitro effects of pulsed electromagnetic field treatment on osteogenic differentiation of two different mesenchymal cell lineages BioResearch Open Access 2013 2 4 283 294 10.1089/biores.2013.0016 23914335 

  121. 121 Ferroni L. Tocco I. De Pieri A. Pulsed magnetic therapy increases osteogenic differentiation of mesenchymal stem cells only if they are pre-committed Life Sciences 2016 152 44 51 2-s2.0-84962026708 10.1016/j.lfs.2016.03.020 26979772 

  122. 122 Yin Y. Chen P. Yu Q. Peng Y. Zhu Z. Tian J. The Effects of a Pulsed Electromagnetic Field on the Proliferation and Osteogenic Differentiation of Human Adipose-Derived Stem Cells Medical Science Monitor 2018 24 3274 3282 10.12659/MSM.907815 29775452 

  123. 123 Fu Y.-C. Lin C.-C. Chang J.-K. A novel single pulsed electromagnetic field stimulates osteogenesis of bone marrow mesenchymal stem cells and bone repair PLoS ONE 2014 9 3 10.1371/journal.pone.0091581 e91581 2-s2.0-84898412073 

  124. 124 Petecchia L. Sbrana F. Utzeri R. Electro-magnetic field promotes osteogenic differentiation of BM-hMSCs through a selective action on Ca 2+ -related mechanisms Scientific Reports 2015 5 10.1038/srep13856 2-s2.0-84941588135 

  125. 125 Jazayeri M. Shokrgozar M. A. Haghighipour N. Bolouri B. Mirahmadi F. Farokhi M. Effects of electromagnetic stimulation on gene expression of mesenchymal stem cells and repair of bone lesions Cell 2017 19 1 34 44 2-s2.0-85012115866 

  126. 126 Tsai M.-T. Li W.-J. Tuan R. S. Chang W. H. Modulation of osteogenesis in human mesenchymal stem cells by specific pulsed electromagnetic field stimulation Journal of Orthopaedic Research 2009 27 9 1169 1174 2-s2.0-68849083242 10.1002/jor.20862 19274753 

  127. 127 Sun L.-Y. Hsieh D.-K. Lin P.-C. Chiu H.-T. Chiou T.-W. Pulsed electromagnetic fields accelerate proliferation and osteogenic gene expression in human bone marrow mesenchymal stem cells during osteogenic differentiation Bioelectromagnetics 2009 219 75 209 219 10.1002/bem.20550 2-s2.0-77952015323 

  128. 128 Sun L.-Y. Hsieh D.-K. Yu T.-C. Effect of pulsed electromagnetic field on the proliferation and differentiation potential of human bone marrow mesenchymal stem cells Bioelectromagnetics 2009 30 4 251 260 2-s2.0-66149128503 10.1002/bem.20472 19204973 

  129. 129 Jansen J. H. W. van der Jagt O. P. Punt B. J. Stimulation of osteogenic differentiation in human osteoprogenitor cells by pulsed electromagnetic fields: an in vitro study BMC Musculoskeletal Disorders 2010 11 1 p. 188 10.1186/1471-2474-11-188 2-s2.0-77955806322 20731873 

  130. 130 Kaivosoja E. Sariola V. Chen Y. Konttinen Y. T. The effect of pulsed electromagnetic fields and dehydroepiandrosterone on viability and osteo-induction of human mesenchymal stem cells Journal of Tissue Engineering and Regenerative Medicine 2015 9 1 31 40 2-s2.0-84920614470 10.1002/term.1612 23038647 

  131. 131 Selvamurugan N. He Z. Rifkin D. Dabovic B. Partridge N. C. Pulsed Electromagnetic Field Regulates MicroRNA 21 Expression to Activate TGF- β Signaling in Human Bone Marrow Stromal Cells to Enhance Osteoblast Differentiation Stem Cells International 2017 2017 17 2450327 10.1155/2017/2450327 2-s2.0-85018927048 

  132. 132 He Z. Selvamurugan N. Warshaw J. Partridge N. C. Pulsed electromagnetic fields inhibit human osteoclast formation and gene expression via osteoblasts Bone 2018 106 194 203 2-s2.0-85032432016 10.1016/j.bone.2017.09.020 28965919 

  133. 133 Esposito M. Lucariello A. Riccio I. Riccio V. Esposito V. Riccardi G. Differentiation of human osteoprogenitor cells increases after treatment with pulsed electromagnetic fields In Vivo (Brooklyn) 2012 26 2 299 304 2-s2.0-84857850428 

  134. 134 De Mattei M. Caruso A. Traina G. C. Pezzetti F. Baroni T. Sollazzo V. Correlation between pulsed electromagnetic fields exposure time and cell proliferation increase in human osteosarcoma cell lines and human normal osteoblast cells in vitro Bioelectromagnetics 1999 20 3 177 182 2-s2.0-0032603219 10.1002/(SICI)1521-186X(1999)20:3 3.0.CO;2-# 10194560 

  135. 135 Lin H.-Y. Lin Y.-J. In vitro effects of low frequency electromagnetic fields on osteoblast proliferation and maturation in an inflammatory environment Bioelectromagnetics 2011 32 7 552 560 2-s2.0-80052268297 10.1002/bem.20668 21448989 

  136. 136 Wang J. Tang N. Xiao Q. Pulsed electromagnetic field may accelerate in vitro endochondral ossification Bioelectromagnetics 2015 36 1 35 44 2-s2.0-84914152990 10.1002/bem.21882 25358461 

  137. 137 Bagheri L. Pellati A. Rizzo P. Notch pathway is active during osteogenic differentiation of human bone marrow mesenchymal stem cells induced by pulsed electromagnetic fields Journal of Tissue Engineering and Regenerative Medicine 2017 12 2 304 315 10.1002/term.2455 2-s2.0-85026401422 28482141 

  138. 138 Luben R. A. Cain C. D. Chen M. C.-Y. Rosen D. M. Adey W. R. Effects of electromagnetic stimuli on bone and bone cells in vitro: Inhibition of responses to parathyroid hormone by low-energy low-frequency fields Proceedings of the National Acadamy of Sciences of the United States of America 1982 79 13 4180 4184 2-s2.0-0342350374 10.1073/pnas.79.13.4180 6287472 

  139. 139 Lohmann C. H. Schwartz Z. Liu Y. Pulsed electromagnetic fields affect phenotype and connexin 43 protein expression in MLO-Y4 osteocyte-like cells and ROS 17/2.8 osteoblast-like cells Journal of Orthopaedic Research 2003 21 2 326 334 2-s2.0-0037224693 10.1016/S0736-0266(02)00137-7 12568966 

  140. 140 Shimizu T. Zerwekh J. E. Videman T. Bone ingrowth into porous calcium phosphate ceramics: Influence of pulsing electromagnetic field Journal of Orthopaedic Research 1988 6 2 248 258 2-s2.0-0023984872 10.1002/jor.1100060212 2830390 

  141. 141 Ottani V. Raspanti M. Martini D. Electromagnetic stimulation on the bone growth using backscattered electron imaging Micron 2002 33 2 121 125 2-s2.0-0036027876 10.1016/S0968-4328(01)00008-7 11567880 

  142. 142 Fini M. Cadossi R. The effect of pulsed electromagnetic fields on the osteointegration of hydroxyapatite implants in cancellous bone: a morphologic and microstructural in vivo study Journal of Orthopaedic Research 2002 20 756 763 12168664 

  143. 143 Fini M. Giavaresi G. Giardino R. Cavani F. Cadossi R. Histomorphometric and mechanical analysis of the hydroxyapatite-bone interface after electromagnetic stimulation The Journal of Bone & Joint Surgery (British Volume) 2006 88-B 1 123 128 10.1302/0301-620X.88B1.16496 

  144. 144 Fassina L. Saino E. Sbarra M. S. In vitro electromagnetically stimulated SAOS-2 osteoblasts inside porous hydroxyapatite Journal of Biomedical Materials Research Part A 2010 93 4 1272 1279 2-s2.0-77951570302 10.1002/jbm.a.32620 19827111 

  145. 145 Schwartz Z. Simon B. J. Duran M. A. Barabino G. Chaudhri R. Boyan B. D. Pulsed electromagnetic fields enhance BMP-2 dependent osteoblastic differentiation of human mesenchymal stem cells Journal of Orthopaedic Research 2008 26 9 1250 1255 2-s2.0-49149129829 10.1002/jor.20591 18404656 

  146. 146 Schwartz Z. Fisher M. Lohmann C. H. Simon B. J. Boyan B. D. Osteoprotegerin (OPG) production by cells in the osteoblast lineage is regulated by pulsed electromagnetic fields in cultures grown on calcium phosphate substrates Annals of Biomedical Engineering 2009 37 3 437 444 2-s2.0-59449092168 10.1007/s10439-008-9628-3 19139991 

  147. 147 Martin T. J. Sims N. A. RANKL/OPG; Critical role in bone physiology Reviews in Endocrine and Metabolic Disorders 2015 16 2 131 139 10.1007/s11154-014-9308-6 25557611 

  148. 148 Simonet W. S. Lacey D. L. Dunstan C. R. Osteoprotegerin: a novel secreted protein involved in the regulation of bone density Cell 1997 89 2 309 319 10.1016/S0092-8674(00)80209-3 2-s2.0-0031005576 9108485 

  149. 149 Yasuda H. Shima N. Nakagawa N. Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesis-inhibitory factor and is identical to TRANCE/RANKL 95 Proceedings of the National Academy of Sciences of the USA 1998 3597 3602 

  150. 150 Tsuda E. Goto M. Mochizuki S.-I. Isolation of a novel cytokine from human fibroblasts that specifically inhibits osteoclastogenesis Biochemical and Biophysical Research Communications 1997 234 1 137 142 2-s2.0-0030989969 10.1006/bbrc.1997.6603 9168977 

  151. 151 Chang K. Chang W. H.-S. Huang S. Huang S. Shih C. Pulsed electromagnetic fields stimulation affects osteoclast formation by modulation of osteoprotegerin, RANK ligand and macrophage colony-stimulating factor Journal of Orthopaedic Research 2005 23 6 1308 1314 2-s2.0-27644539784 10.1016/j.orthres.2005.03.012 10.1016/j.orthres.2005.03.012.1100230611 15913941 

  152. 152 Chang W. H.-S. Chen L.-T. Sun J.-S. Lin F.-H. Effect of pulse-burst electromagnetic field stimulation on osteoblast cell activities Bioelectromagnetics 2004 25 6 457 465 2-s2.0-4444363310 10.1002/bem.20016 15300732 

  153. 153 Spadaro J. A. Albanese S. A. Chase S. E. Electromagnetic effects on bone formation at implants in the medullary canal in rabbits Journal of Orthopaedic Research 1990 8 5 685 693 2-s2.0-0025485124 10.1002/jor.1100080510 2388108 

  154. 154 Fassina L. Saino E. Visai L. Electromagnetic enhancement of a culture of human SAOS-2 osteoblasts seeded onto titanium fiber-mesh scaffolds Journal of Biomedical Materials Research Part A 2008 87 3 750 759 2-s2.0-56349084755 10.1002/jbm.a.31827 18200542 

  155. 155 Fassina L. Saino E. Visai L. Magenes G. Electromagnetically enhanced coating of a sintered titanium grid with human SAOS-2 osteoblasts and extracellular matrix Proceedings of the 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS'08 August 2008 IEEE 3582 3585 2-s2.0-61849160468 

  156. 156 Wang J. An Y. Li F. The effects of pulsed electromagnetic field on the functions of osteoblasts on implant surfaces with different topographies Acta Biomaterialia 2014 10 2 975 985 2-s2.0-84896546175 10.1016/j.actbio.2013.10.008 24140610 

  157. 157 Bloise N. Petecchia L. Ceccarelli G. The effect of pulsed electromagnetic field exposure on osteoinduction of human mesenchymal stem cells cultured on nano-TiO2 surfaces PLoS ONE 2018 13 6 e0199046 10.1371/journal.pone.0199046 

  158. 158 Carbone R. Marangi I. Zanardi A. Biocompatibility of cluster-assembled nanostructured TiO 2 with primary and cancer cells Biomaterials 2006 27 17 3221 3229 10.1016/j.biomaterials.2006.01.056 2-s2.0-33644791752 16504283 

  159. 159 Vercellino M. Ceccarelli G. Cristofaro F. Nanostructured TiO 2 surfaces promote human bone marrow mesenchymal stem cells differentiation to osteoblasts Nanomaterials 2016 6 7 10.3390/nano6070124 2-s2.0-84975796428 

  160. 160 Atalay B. Aybar B. Ergüven M. The Effects of Pulsed Electromagnetic Field (PEMF) on Osteoblast-Like Cells Cultured on Titanium and Titanium-Zirconium Surfaces The Journal of Craniofacial Surgery 2013 24 6 2127 2134 10.1097/SCS.0b013e31829a7ebc 24220422 

  161. 161 Jing D. Zhai M. Tong S. Pulsed electromagnetic fields promote osteogenesis and osseointegration of porous titanium implants in bone defect repair through a Wnt/ β -catenin signaling-associated mechanism Scientific Reports 2016 6 1 13 32045 10.1038/srep32045 2-s2.0-84983643624 28442746 

  162. 162 Buzzá E. P. Shibli J. A. Barbeiro R. H. Barbosa J. R. D. A. Effects of electromagnetic field on bone healing around commercially pure titanium surface: Histologic and mechanical study in rabbits Implant Dentistry 2003 12 2 182 187 2-s2.0-0042888882 10.1097/01.ID.0000058385.23346.4D 12861888 

  163. 163 Do Nascimento C. Issa J. P. M. Da Silva Mello A. S. De Albuquerque Junior R. F. Effect of electromagnetic field on bone regeneration around dental implants after immediate placement in the dog mandible: A pilot study Gerodontology 2012 29 2 1249 1251 10.1111/j.1741-2358.2011.00525.x 2-s2.0-84861609242 

  164. 164 Matsumoto H. Ochi M. Abiko Y. Hirose Y. Kaku T. Sakaguchi K. Pulsed electromagnetic fields promote bone formation around dental implants inserted into the femur of rabbits Clinical Oral Implants Research 2000 11 4 354 360 2-s2.0-0034252660 10.1034/j.1600-0501.2000.011004354.x 11168228 

  165. 165 Özen J. Atay A. Orucß S. Dalkiz M. Beydemir B. Develi S. Evaluation of pulsed electromagnetic fields on bone healing after implant placement in the rabbit mandibular model Turkish Journal of Medical Sciences 2004 34 2 91 95 2-s2.0-1942534179 

  166. 166 Akca K. Sarac E. Baysal U. Fanuscu M. Chang T. Cehreli M. Micro-morphologic changes around biophysically-stimulated titanium implants in ovariectomized rats Head & Face Medicine 2007 3 28 10.1186/1746-160X-3-28 

  167. 167 Grana D. R. Marcos H. J. A. Kokubu G. A. Pulsed electromagnetic fields as adjuvant therapy in bone healing and peri-implant bone formation: an experimental study in rats Acta Odontologica Latinoamericana 2018 21 1 77 83 

  168. 168 Barak S. Neuman M. Iezzi G. Piattelli A. Perrotti V. Gabet Y. A new device for improving dental implants anchorage: A histological and micro-computed tomography study in the rabbit Clinical Oral Implants Research 2016 27 8 935 942 10.1111/clr.12661 2-s2.0-84938634812 26249830 

  169. 169 Chan A. Y. Development of an intra-oral bone growth stimulator for titanium dental implants 30 Proceedings of the Canadian Medical and Biological Engineering Society 2007 

  170. 170 Bambini F. Santarelli A. Putignano A. Use of supercharged cover screw as static magnetic field generator for bone healing, 2nd part: in vivo enhancement of bone regeneration in rabbits Journal of Biologucal Regulators and Homeostatic Agents 2017 31 2 481 485 

  171. 171 Ijiri K. Matsunaga S. Fukuyama K. The effect of pulsing electromagnetic field on bone ingrowth into a porous coated implant Anticancer Research 1996 16 5A 2853 2856 8917397 

  172. 172 Cai J. Li W. Sun T. Li X. Luo E. Jing D. Pulsed electromagnetic fields preserve bone architecture and mechanical properties and stimulate porous implant osseointegration by promoting bone anabolism in type 1 diabetic rabbits Osteoporosis International 2018 29 5 1177 1191 10.1007/s00198-018-4392-1 29523929 

  173. 173 Arjmand M. Ardeshirylajimi A. Maghsoudi H. Azadian E. Osteogenic differentiation potential of mesenchymal stem cells cultured on nanofibrous scaffold improved in the presence of pulsed electromagnetic field Journal of Cellular Physiology 2018 233 2 1061 1070 2-s2.0-85020229567 10.1002/jcp.25962 28419435 

  174. 174 Tsai M.-T. Chang W. H.-S. Chang K. Hou R.-J. Wu T.-W. Pulsed electromagnetic fields affect osteoblast proliferation and differentiation in bone tissue engineering Bioelectromagnetics 2007 28 7 519 528 2-s2.0-35048871003 10.1002/bem.20336 17516509 

  175. 175 Schnoke M. Midura R. J. Pulsed electromagnetic fields rapidly modulate intracellular signaling events in osteoblastic cells: Comparison to parathyroid hormone and insulin Journal of Orthopaedic Research 2007 25 7 933 940 2-s2.0-34447251540 10.1002/jor.20373 17427956 

  176. 176 Patruno A. Amerio P. Pesce M. Extremely low frequency electromagnetic fields modulate expression of inducible nitric oxide synthase, endothelial nitric oxide synthase and cyclooxygenase-2 in the human keratinocyte cell line HaCat: Potential therapeutic effects in wound healing British Journal of Dermatology 2010 162 2 258 266 2-s2.0-74349107913 10.1111/j.1365-2133.2009.09527.x 19799606 

  177. 177 Torricelli P. Fini M. Giavaresi G. Botter R. Beruto D. Giardino R. Biomimetic PMMA-based bone substitutes: A comparativein vitro evaluation of the effects of pulsed electromagnetic field exposure Journal of Biomedical Materials Research Part B: Applied Biomaterials 2003 64A 1 182 188 10.1002/jbm.a.10372 

  178. 178 Veronesi F. Cadossi M. Giavaresi G. Pulsed electromagnetic fields combined with a collagenous scaffold and bone marrow concentrate enhance osteochondral regeneration: an in vivo study BMC Musculoskeletal Disorders 2015 16 233 10.1186/s12891-015-0683-2 2-s2.0-84940508256 

  179. 179 Yang H. J. Kim R. Y. Hwang S. J. Pulsed electromagnetic fields enhance bone morphogenetic protein-2 dependent-bone regeneration Tissue Engineering Part: A 2015 21 19 2629 2637 10.1089/ten.tea.2015.0032 2-s2.0-84944069213 26200207 

  180. 180 Fassina L. Saino E. Visai L. Electromagnetic Stimulation to Optimize the Bone Regeneration Capacity of Gelatin-Based Cryogels International Journal of Immunopathology and Pharmacology 2012 25 1 165 174 10.1177/039463201202500119 22507329 

  181. 181 Fassina L. Saino E. Visai L. Magenes G. Electromagnetically enhanced coating of a sintered titanium grid with human SAOS-2 osteoblasts and extracellular matrix Proceedings of the 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS'08 August 2008 3582 3585 2-s2.0-61849160468 

  182. 182 Silva E. D. Babo P. S. Costa-Almeida R. Multifunctional magnetic-responsive hydrogels to engineer tendon-to-bone interface Nanomedicine: Nanotechnology, Biology and Medicine 2017 10.1016/j.nano.2017.06.002 

  183. 183 Kondaveeti S. Semeano A. T. Cornejo D. R. Ulrich H. Petri D. F. Magnetic hydrogels for levodopa release and cell stimulation triggered by external magnetic field Colloids and Surfaces B: Biointerfaces 2018 167 415 424 10.1016/j.colsurfb.2018.04.040 29704742 

  184. 184 Kondaveeti S. Cornejo D. R. Petri D. F. S. Alginate/magnetite hybrid beads for magnetically stimulated release of dopamine Colloids and Surfaces B: Biointerfaces 2016 138 94 101 2-s2.0-84949507104 10.1016/j.colsurfb.2015.11.058 26674837 

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로