$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Preparation and characterization of fast-curing powder epoxy adhesive at middle temperature 원문보기

Royal Society Open Science, v.5 no.8, 2018년, pp.180566 -   

Xu, Jie (Zhejiang Provincial Collaborative Innovation Center for Bamboo Resources and High-efficiency Utilization , 666 Wusu Street, Hangzhou 311300 , People's Republic of China) ,  Yang, Jiayao (Zhejiang Provincial Collaborative Innovation Center for Bamboo Resources and High-efficiency Utilization , 666 Wusu Street, Hangzhou 311300 , People's Republic of China) ,  Liu, Xiaohuan (Zhejiang Provincial Collaborative Innovation Center for Bamboo Resources and High-efficiency Utilization , 666 Wusu Street, Hangzhou 311300 , People's Republic of China) ,  Wang, Hengxu (Zhejiang Provincial Collaborative Innovation Center for Bamboo Resources and High-efficiency Utilization , 666 Wusu Street, Hangzhou 311300 , People's Republic of China) ,  Zhang, Jingjie (Zhejiang Provincial Collaborative Innovation Center for Bamboo Resources and High-efficiency Utilization , 666 Wusu Street, Hang) ,  Fu, Shenyuan

Abstract AI-Helper 아이콘AI-Helper

At present, the disadvantage of powder epoxy adhesive is the limited application area. In order to widen the application range of powder epoxy adhesive from heat-resistant substrates (such as metals) to heat-sensitive substrates (such as plastic products, cardboard and wood), it is necessary to decr...

주제어

참고문헌 (40)

  1. 1 Javdanitehran M , Berg DC , Duemichen E , Ziegmann G 2016 An iterative approach for isothermal curing kinetics modelling of an epoxy resin system . Thermochim. Acta 623 , 72 – 79 . ( 10.1016/j.tca.2015.11.014 ) 

  2. 2 Auvergne R , Caillol S , David G , Boutevin B , Pascault JP 2013 Biobased thermosetting epoxy: present and future . Chem. Rev. 114 , 1082 – 1115 . ( 10.1021/cr3001274 ) 24125074 

  3. 3 Ham YR , Kim SH , Shin YJ , Lee DH , Yang M , Min JH , Shin JS 2010 A comparison of some imidazoles in the curing of epoxy resin . J. Ind. Eng. Chem. 16 , 556 – 559 . ( 10.1016/j.jiec.2010.03.022 ) 

  4. 4 Xu YJ , Wang J , Tan Y , Qi M , Chen L , Wang YZ 2018 A novel and feasible approach for one-pack flame-retardant epoxy resin with long pot life and fast curing . Chem. Eng. J. 337 , 30 – 39 . ( 10.1016/j.cej.2017.12.086 ) 

  5. 5 Wan J , Zhao J , Gan B , Li C , Molina-Aldareguia J , Zhao Y , Wang DY 2016 Ultrastiff biobased epoxy resin with high T g and low permittivity: from synthesis to properties . ACS. Sustain. Chem/Eng. 4 , 2869 – 2880 . ( 10.1021/acssuschemeng.6b00479 ) 

  6. 6 Shikha D , Kamani PK , Shukla MC 2003 Studies on synthesis of water-borne epoxy ester based on RBO fatty acids . Prog. Org. Coat. 47 , 87 – 94 . ( 10.1016/S0300-9440(02)00159-5 ) 

  7. 7 Kamiya K , Suzuki N 2016 A low-temperature fast curing latent catalyst microencapsulated in a porous resin structure . J. Adhes. Adhes. 68 , 333 – 340 . ( 10.1016/j.ijadhadh.2016.04.013 ) 

  8. 8 Keller A , Masania K , Taylor AC , Dransfeld C 2016 Fast-curing epoxy polymers with silica nanoparticles: properties and rheo-kinetic modelling . J. Mater. Sci. 51 , 236 – 251 . ( 10.1007/s10853-015-9158-y ) 

  9. 9 Lakho DA , Yao D , Cho K , Ishaq M , Wang Y 2017 Study of the curing kinetics toward development of fast-curing epoxy resins . Polym-Plast. Technol. 56 , 161 – 170 . ( 10.1080/03602559.2016.1185623 ) 

  10. 10 Arimitsu K , Fuse S , Kudo K , Furutani M 2015 Imidazole derivatives as latent curing agents for epoxy thermosetting resins . Mater. Lett. 161 , 408 – 410 . ( 10.1016/j.matlet.2015.08.141 ) 

  11. 11 Yen WP , Chen KL , Yeh MY , Uramaru N , Lin HY , Wong FF 2016 Investigation of soluble PEG-imidazoles as the thermal latency catalysts for epoxy-phenolic resins . J. Taiwan Inst. Chem. 59 , 98 – 105 . ( 10.1016/j.jtice.2015.08.007 ) 

  12. 12 Maka H , Spychaj T , Pilawka R 2012 Epoxy resin/ionic liquid systems: the influence of imidazolium cation size and anion type on reactivity and thermomechanical properties . Ind. Eng. Chem. Res. 51 , 5197 – 5206 . ( 10.1021/ie202321j ) 

  13. 13 Kudo K , Furutani M , Arimitsu K 2015 Imidazole derivatives with an intramolecular hydrogen bond as thermal latent curing agents for thermosetting resins . ACS Macro. Lett. 4 , 1085 – 1088 . ( 10.1021/acsmacrolett.5b00601 ) 

  14. 14 Li C , Tan J , Gu J , Xue Y , Qiao L , Zhang Q 2017 Facile synthesis of imidazole microcapsules via thiol-click chemistry and their application as thermally latent curing agent for epoxy resins . Comp. Sci. Technol. 142 , 198 – 206 . ( 10.1016/j.compscitech.2017.02.014 ) 

  15. 15 Pin JM , Sbirrazzuoli N , Mija A 2015 From epoxidized linseed oil to bioresin: an overall approach of epoxy/anhydride cross-linking . ChemSusChem. 8 , 1232 – 1243 . ( 10.1002/cssc.201403262 ) 25754910 

  16. 16 Supanchaiyamat N , Shuttleworth PS , Hunt AJ , Clark JH , Matharu AS 2012 Thermosetting resin based on epoxidised linseed oil and bio-derived crosslinker . Green Chem. 14 , 1759 – 1765 . ( 10.1039/c2gc35154d ) 

  17. 17 Patel SR , Patel RG 1992 Effect of the anhydride structure on the curing kinetics and thermal stability of tetrafunctional epoxy resin . Thermochim. Acta 202 , 97 – 104 . ( 10.1016/0040-6031(92)85155-O ) 

  18. 18 Geissberger R , Maldonado J , Bahamonde N , Keller A , Dransfeld C , Masania K 2017 Rheological modelling of thermoset composite processing . Compos. B: Eng. 124 , 182 – 189 . ( 10.1016/j.compositesb.2017.05.040 ) 

  19. 19 Păcurariu C , Lazău I , Lazău R 2017 Kinetic studies of the dehydroxylation and crystallization of raw kaolinite and fluorides-modified kaolinite . J. Therm. Anal. Calorim. 127 , 239 – 246 . ( 10.1007/s10973-016-5763-5 ) 

  20. 20 Beňová E , Zeleňák V , Halamová D , Almáši M , Petrul'Ová V , Psotka M , Hornebecq V 2017 A drug delivery system based on switchable photo-controlled p-coumaric acid derivatives anchored on mesoporous silica . J. Mater. Chem. B 5 , 817 – 825 . ( 10.1039/C6TB02040B ) 

  21. 21 Fei X , Wei W , Zhao F , Zhu Y , Luo J , Chen M , Liu X 2016 Efficient toughening of epoxy–anhydride thermosets with a bio-based tannic acid derivative . ACS Sustain. Chem/Eng. 5 , 596 – 603 . ( 10.1021/acssuschemeng.6b01967 ) 

  22. 22 Milne NJ 1998 Oxygen bleaching systems in domestic laundry . J. Surf. Deter. 1 , 253 – 261 . ( 10.1007/s11743-998-0029-z ) 

  23. 23 Lin CT , Tsai MC , Lee CY , Chiu HT , Chin TS 2010 Quantitative appraisal of the interfacial anchoring state of polyaromatic hydrocarbons during the formation of C/C composites . Carbon J. 48 , 1049 – 1055 . ( 10.1016/j.carbon.2009.11.024 ) 

  24. 24 Liu X , Xin W , Zhang J 2009 Rosin-based acid anhydrides as alternatives to petrochemical curing agents . Green Chem. 11 , 1018 – 1025 . ( 10.1039/b903955d ) 

  25. 25 Luo L , Meng Y , Qiu T 2013 An epoxy-ended hyperbranched polymer as a new modifier for toughening and reinforcing in epoxy resin . J. Appl. Polym. Sci . 130 , 1064 – 1073 . ( 10.1002/app.39257 ) 

  26. 26 Wang R , Zhuo D , Weng Z , Wu L , Cheng X , Zhou Y , Xuan B 2015 A novel nanosilica/graphene oxide hybrid and its flame retarding epoxy resin with simultaneously improved mechanical, thermal conductivity, and dielectric properties . J. Mater. Chem. A 3 , 9826 – 9836 . ( 10.1039/C5TA00722D ) 

  27. 27 Miao X , Meng Y , Li X 2015 Epoxide-terminated hyperbranched polyether sulphone as triple enhancement modifier for DGEBA . J. Appl. Polym. Sci. 132 , 41910 ( 10.1002/app.41910 ) 

  28. 28 Fei X , Zhao F , Wei W , Luo J , Chen M , Liu X 2016 Tannic acid as a bio-based modifier of epoxy/anhydride thermosets . Polym 8 , 314 . 

  29. 29 Liu T , Nie Y , Zhang L 2015 Dependence of epoxy toughness on the backbone structure of hyperbranched polyether modifiers . RSC Adv. 5 , 3408 – 3416 . ( 10.1039/C4RA10974K ) 

  30. 30 Liu T , Nie Y , Chen R 2015 Hyperbranched polyether as an all-purpose epoxy modifier: controlled synthesis and toughening mechanisms . J. Mater. Chem. A 3 , 1188 – 1198 . ( 10.1039/C4TA04841E ) 

  31. 31 Mashouf Roudsari G , Mohanty AK , Misra M 2014 Study of the curing kinetics of epoxy resins with biobased hardener and epoxidized soybean oil . ACS Sustain. Chem/Eng. 2 , 2111 – 2116 . ( 10.1021/sc500176z ) 

  32. 32 Kissinger HE 1957 Reaction kinetics in different thermal analysis . Anal. Chem. 29 , 1702 – 1706 . ( 10.1021/ac60131a045 ) 

  33. 33 Ozawa TA 1965 New method of analyzing thermogravimetric data . Bull. Chem. Soc. Jpn 38 , 1881 – 1886 . ( 10.1246/bcsj.38.1881 ) 

  34. 34 Zhang Y , Vyazovkin S 2006 Comparative cure behavior of DGEBA and DGEBP with 4-nitro-1, 2-phenylenediamine . Polym. 47 , 6659 – 6663 . ( 10.1016/j.polymer.2006.07.058 ) 

  35. 35 Vyazovkin S , Mititelu A , Sbirrazzuoli N 2003 Kinetics of epoxy–amine curing accompanied by the formation of liquid crystalline structure . Macromol. Rapid. Commun. 24 , 1060 – 1065 . ( 10.1002/marc.200300023 ) 

  36. 36 Zvetkov VL , Calado V 2013 Comparative DSC kinetics of the reaction of DGEBA with aromatic diamines. III. Formal kinetic study of the reaction of DGEBA with diamino diphenyl methane . Thermochim. Acta 560 , 95 – 103 . ( 10.1016/j.tca.2013.02.017 ) 

  37. 37 Ren R , Xiong X , Ma X , Liu S , Wang J , Chen P , Zeng Y 2016 Isothermal curing kinetics and mechanism of DGEBA epoxy resin with phthalide-containing aromatic diamine . Thermochim. Acta 623 , 15 – 21 . ( 10.1016/j.tca.2015.11.011 ) 

  38. 38 Thanki JD , Parsania PH 2017 Dynamic DSC curing kinetics and thermogravimetric study of epoxy resin of 9,9′-bis (4-hydroxyphenyl) anthrone-10 . J. Therm. Anal. Calorim . 130 , 2145 – 2156 . ( 10.1007/s10973-017-6761-y ) 

  39. 39 Kuo PY , Sain M , Yan N 2014 Synthesis and characterization of an extractive-based bio-epoxy resin from beetle infested Pinus contorta bark . Green Chem. 16 , 3483 – 3493 . ( 10.1039/C4GC00459K ) 

  40. 40 Khodaei M , Valanezhad A , Watanabe I 2017 Surface and mechanical properties of modified porous titanium scaffold . Surf. Coat. Tech. 315 , 61 – 66 . ( 10.1016/j.surfcoat.2017.02.032 ) 

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로