$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Caffeoylquinic Acid-Rich Extract of Aster glehni F. Schmidt Ameliorates Nonalcoholic Fatty Liver through the Regulation of PPAR δ and Adiponectin in ApoE KO Mice 원문보기

PPAR research, v.2017, 2017년, pp.3912567 -   

Lee, Yong-Jik (Cardiovascular Center, Korea University, Guro Hospital, 148 Gurodong-ro, Guro-gu, Seoul 08308, Republic of Korea) ,  Jang, Yoo-Na (Cardiovascular Center, Korea University, Guro Hospital, 148 Gurodong-ro, Guro-gu, Seoul 08308, Republic of Korea) ,  Han, Yoon-Mi (Cardiovascular Center, Korea University, Guro Hospital, 148 Gurodong-ro, Guro-gu, Seoul 08308, Republic of Korea) ,  Kim, Hyun-Min (Cardiovascular Center, Korea University, Guro Hospital, 148 Gurodong-ro, Guro-gu, Seoul 08308, Republic of Korea) ,  Jeong, Jong-Min (Cardiovascular Center, Korea University, Guro Hospital, 148 Gurodong-ro, Guro-gu, Seoul 08308, Republic of Korea) ,  Son, Min Jeoung (Molecular Recognition Research Center, Materials and Life Science Research Division, Korea Institute of Science and Technology, Hwarangno 14 Gil 5, Seoul 136-791, Republic of Korea) ,  Jin, Chang Bae (Molecular Recognition Research Center, Materials and Life Science Research Division, Korea Institute of Science and Technology, Hwarangno 14 Gil 5, Seoul 136-791, Republic of Korea) ,  Kim, Hyoung Ja (Molecular Recognition Research Center, Materials and Life S) ,  Seo, Hong Seog

Abstract AI-Helper 아이콘AI-Helper

Aster glehni is well known for its therapeutic properties. This study was performed to investigate the effects of A. glehni on nonalcoholic fatty liver disease (NAFLD) in atherosclerotic condition, by determining the levels of biomarkers related to lipid metabolism and inflammation in serum, liver, ...

참고문헌 (53)

  1. 1 Kotronen A. Westerbacka J. Bergholm R. Pietiläinen K. H. Yki-Järvinen H. Liver fat in the metabolic syndrome Journal of Clinical Endocrinology and Metabolism 2007 92 9 3490 3497 2-s2.0-34548761014 10.1210/jc.2007-0482 17595248 

  2. 2 Paschos P. Paletas K. Non alcoholic fatty liver disease and metabolic syndrome Hippokratia 2009 13 1 9 19 2-s2.0-65749115425 19240815 

  3. 3 Mavrogiannaki A. N. Migdalis I. N. Nonalcoholic fatty liver disease, diabetes mellitus and cardiovascular disease: newer data International Journal of Endocrinology 2013 2013 8 10.1155/2013/450639 450639 2-s2.0-84877247095 

  4. 4 Ryoo J.-H. Suh Y. J. Shin H. C. Cho Y. K. Choi J.-M. Park S. K. Clinical association between non-alcoholic fatty liver disease and the development of hypertension Journal of Gastroenterology and Hepatology (Australia) 2014 29 11 1926 1931 2-s2.0-84911993941 10.1111/jgh.12643 

  5. 5 Maeda K. Okubo K. Shimomura I. Funahashi T. Matsuzawa Y. Matsubara K. cDNA cloning and expression of a novel adipose specific collagen-like factor, apM1 (adipose most abundant gene transcript 1) Biochemical and Biophysical Research Communications 1996 221 2 286 289 10.1006/bbrc.1996.0587 2-s2.0-0029980285 8619847 

  6. 6 Ekmekci H. Ekmekci O. B. The role of adiponectin in atherosclerosis and thrombosis Clinical and Applied Thrombosis/Hemostasis 2006 12 2 163 168 2-s2.0-33747806287 10.1177/107602960601200203 16708117 

  7. 7 Hopkins T. A. Ouchi N. Shibata R. Walsh K. Adiponectin actions in the cardiovascular system Cardiovascular Research 2007 74 1 11 18 2-s2.0-33847690643 10.1016/j.cardiores.2006.10.009 17140553 

  8. 8 Hong J. Kim S. Kim H.-S. Hepatoprotective effects of soybean embryo by enhancing adiponectin-mediated AMP-activated protein kinase α pathway in high-fat and high-cholesterol diet-induced nonalcoholic fatty liver disease Journal of Medicinal Food 2016 19 6 549 559 2-s2.0-84974575031 10.1089/jmf.2015.3604 27266339 

  9. 9 Clarke P. R. Hardie D. G. Regulation of HMG-CoA reductase: identification of the site phosphorylated by the AMP-activated protein kinase in vitro and in intact rat liver The EMBO Journal 1990 9 8 2439 2446 2-s2.0-0025310576 2369897 

  10. 10 Foretz M. Carling D. Guichard C. Ferre P. Foufelle F. Amp-activated protein kinase inhibits the glucose-activated expression of fatty acid synthase gene in rat hepatocytes Journal of Biological Chemistry 1998 273 24 14767 14771 2-s2.0-0032511053 10.1074/jbc.273.24.14767 9614076 

  11. 11 Woods A. Azzout-Marniche D. Foretz M. Characterization of the role of AMP-activated protein kinase in the regulation of glucose-activated gene expression using constitutively active and dominant negative forms of the kinase Molecular and Cellular Biology 2000 20 18 6704 6711 2-s2.0-0033815967 10.1128/MCB.20.18.6704-6711.2000 10958668 

  12. 12 Kim H.-H. Park G.-H. Park K.-S. Lee J.-Y. An B.-J. Anti-oxidant and anti-inflammation activity of fractions from Aster glehni Fr. Schm Korean Journal of Microbiology and Biotechnology 2010 38 4 434 441 2-s2.0-78651450031 

  13. 13 Kim H. H. Park G. H. Park K. S. Lee J. Y. Kim T. H. An B. J. The effect of Aster glehni Fr. Schm. extracts on whitening and anti-wrinkle Journal of Life Science 2010 20 7 1034 1040 

  14. 14 Lee H.-M. Yang G. Ahn T.-G. Antiadipogenic effects of Aster glehni extract: in vivo and in vitro effects Evidence-Based Complementary and Alternative Medicine 2013 2013 10 10.1155/2013/859624 859624 2-s2.0-84880155292 

  15. 15 Xu A. Wang Y. Lam K. S. L. Fantuzzi G. Mazzone T. Adiponectin Adipose Tissue and Adipokines on Health and Disease 2007 Humana Press Inc 47 57 

  16. 16 Wen J. P. Liu C. E. Hu Y. T. Chen G. Lin L. X. Globular adiponectin regulates energy homeostasis through AMP-activated protein kinase-acetyl-CoA carboxylase (AMPK/ACC) pathway in the hypothalamus Molecular and Cellular Biochemistry 2010 344 1-2 109 115 10.1007/s11010-010-0534-2 2-s2.0-78449267024 20625797 

  17. 17 Chypre M. Zaidi N. Smans K. ATP-citrate lyase: A mini-review Biochemical and Biophysical Research Communications 2012 422 1 1 4 2-s2.0-84861455446 10.1016/j.bbrc.2012.04.144 22575446 

  18. 18 Hatzivassiliou G. Zhao F. Bauer D. E. ATP citrate lyase inhibition can suppress tumor cell growth Cancer Cell 2005 8 4 311 321 2-s2.0-26644441651 10.1016/j.ccr.2005.09.008 16226706 

  19. 19 Cantó C. Auwerx J. PGC-1 α , SIRT1 and AMPK, an energy sensing network that controls energy expenditure Current Opinion in Lipidology 2009 20 2 98 105 10.1097/mol.0b013e328328d0a4 2-s2.0-64549127790 19276888 

  20. 20 Bhalodia Y. S. Sheth N. R. Vaghasiya J. D. Jivani N. P. Hyperlipidemia enhanced oxidative stress and inflammatory response evoked by renal ischemia/reperfusion injury International Journal of Pharmacology 2010 6 1 25 30 2-s2.0-75749143848 10.3923/ijp.2010.25.30 

  21. 21 Cao X.-L. Du J. Zhang Y. Yan J.-T. Hu X.-M. Hyperlipidemia exacerbates cerebral injury through oxidative stress, inflammation and neuronal apoptosis in MCAO/reperfusion rats Experimental Brain Research 2015 233 10 2753 2765 2-s2.0-84942371276 10.1007/s00221-015-4269-x 26238404 

  22. 22 Kim S. Park S. Kim B. Kwon J. Toll-like receptor 7 affects the pathogenesis of non-alcoholic fatty liver disease Scientific Reports 2016 6 2-s2.0-84973879662 10.1038/srep27849 27849 

  23. 23 Tomita K. Tamiya G. Ando S. AICAR, an AMPK activator, has protective effects on alcohol-induced fatty liver in rats Alcoholism: Clinical and Experimental Research 2005 29 12 2-s2.0-30144445780 10.1097/01.alc.0000191126.11479.69 

  24. 24 Konopka A. R. Suer M. K. Wolff C. A. Harber M. P. Markers of human skeletal muscle mitochondrial biogenesis and quality control: Effects of age and aerobic exercise training Journals of Gerontology - Series A Biological Sciences and Medical Sciences 2014 69 4 371 378 2-s2.0-84898974238 10.1093/gerona/glt107 

  25. 25 Brunt E. M. Tiniakos D. G. Histopathology of nonalcoholic fatty liver disease World Journal of Gastroenterology 2010 16 42 5286 5296 21072891 

  26. 26 Bilzer M. Roggel F. Gerbes A. L. Role of Kupffer cells in host defense and liver disease Liver International 2006 26 10 1175 1186 2-s2.0-33750999322 10.1111/j.1478-3231.2006.01342.x 17105582 

  27. 27 Cusi K. Nonalcoholic fatty liver disease in type 2 diabetes mellitus Current Opinion in Endocrinology, Diabetes and Obesity 2009 16 2 141 149 2-s2.0-66149088144 10.1097/MED.0b013e3283293015 

  28. 28 Leite N. C. Salles G. F. Araujo A. L. E. Villela-Nogueira C. A. Cardoso C. R. L. Prevalence and associated factors of non-alcoholic fatty liver disease in patients with type-2 diabetes mellitus Liver International 2009 29 1 113 119 2-s2.0-57749183469 10.1111/j.1478-3231.2008.01718.x 18384521 

  29. 29 López-Suárez A. Guerrero J. M. R. Elvira-González J. Beltrán-Robles M. Cañas-Hormigo F. Bascuñana-Quirell A. Nonalcoholic fatty liver disease is associated with blood pressure in hypertensive and nonhypertensive individuals from the general population with normal levels of alanine aminotransferase European Journal of Gastroenterology and Hepatology 2011 23 11 1011 1017 2-s2.0-80053621872 10.1097/MEG.0b013e32834b8d52 21915061 

  30. 30 Targher G. Bertolini L. Padovani R. Prevalence of nonalcoholic fatty liver disease and its association with cardiovascular disease among type 2 diabetic patients Diabetes Care 2007 30 5 1212 1218 10.2337/dc06-2247 2-s2.0-34247605492 17277038 

  31. 31 Cai J. Zhang S. Huang W. Association between nonalcoholic fatty liver disease and carotid atherosclerosis: A meta-analysis International Journal of Clinical and Experimental Medicine 2015 8 5 7673 7678 2-s2.0-84936990596 26221316 

  32. 32 Fabbrini E. Sullivan S. Klein S. Obesity and nonalcoholic fatty liver disease: biochemical, metabolic, and clinical implications Hepatology 2010 51 2 679 689 10.1002/hep.23280 2-s2.0-75449094816 20041406 

  33. 33 Ouchi N. Walsh K. Adiponectin as an anti-inflammatory factor Clinica Chimica Acta 2007 380 1-2 24 30 2-s2.0-33947627537 10.1016/j.cca.2007.01.026 

  34. 34 Ouchi N. Kihara S. Arita Y. Adiponectin, an adipocyte-derived plasma protein, inhibits endothelial NF- κ B signaling through a cAMP-dependent pathway Circulation 2000 102 11 1296 1301 2-s2.0-0034641647 10.1161/01.CIR.102.11.1296 10982546 

  35. 35 Adamczak M. Wiȩcek A. Funahashi T. Chudek J. Kokot F. Matsuzawa Y. Decreased plasma adiponectin concentration in patients with essential hypertension American Journal of Hypertension 2003 16 1 72 75 2-s2.0-0037230545 10.1016/S0895-7061(02)03197-7 12517687 

  36. 36 Choi K. M. Lee J. Lee K. W. Serum adiponectin concentrations predict the developments of type 2 diabetes and the metabolic syndrome in elderly Koreans Clinical Endocrinology 2004 61 1 75 80 2-s2.0-3242722050 10.1111/j.1365-2265.2004.02063.x 15212647 

  37. 37 Weiss R. Dufour S. Groszmann A. Low adiponectin levels in adolescent obesity: a marker of increased intramyocellular lipid accumulation Journal of Clinical Endocrinology and Metabolism 2003 88 5 2014 2018 10.1210/jc.2002-021711 2-s2.0-0038369154 12727947 

  38. 38 Krämer D. K. Al-Khalili L. Perrini S. Direct activation of glucose transport in primary human myotubes after activation of peroxisome proliferator—activated receptor δ Diabetes 2005 54 4 1157 1163 10.2337/diabetes.54.4.1157 2-s2.0-20144387426 15793256 

  39. 39 Barroso E. Rodríguez-Calvo R. Serrano-Marco L. The PPAR β / δ activator GW501516 prevents the down-regulation of AMPK caused by a high-fat diet in liver and amplifies the PGC-1 α -lipin 1-PPAR α pathway leading to increased fatty acid oxidation Endocrinology 2011 152 5 1848 1859 10.1210/en.2010-1468 2-s2.0-79955368052 21363937 

  40. 40 Feng X. Luo Z. Ma L. Angiotensin II receptor blocker telmisartan enhances running endurance of skeletal muscle through activation of the PPAR- δ /AMPK pathway Journal of Cellular and Molecular Medicine 2011 15 7 1572 1581 10.1111/j.1582-4934.2010.01085.x 2-s2.0-79959452670 20477906 

  41. 41 Lv Q. Zhen Q. Liu L. AMP-kinase pathway is involved in tumor necrosis factor alpha-induced lipid accumulation in human hepatoma cells Life Sciences 2015 131 23 29 2-s2.0-84928560607 10.1016/j.lfs.2015.03.003 25817233 

  42. 42 Zhou X. Wu W. Chen J. Wang X. Wang Y. AMP-activated protein kinase is required for the anti-adipogenic effects of alpha-linolenic acid Nutrition and Metabolism 2015 12 1, article no. 10 2-s2.0-84925010056 10.1186/s12986-015-0006-5 

  43. 43 Nguyen T. M. D. Seigneurin F. Froment P. Combarnous Y. Blesbois E. The 5′-AMP-activated protein kinase (AMPK) is involved in the augmentation of antioxidant defenses in cryopreserved chicken sperm PLoS ONE 2015 10 7 10.1371/journal.pone.0134420 e0134420 

  44. 44 Liang Y. Huang B. Song E. Bai B. Wang Y. Constitutive activation of AMPK α 1 in vascular endothelium promotes high-fat diet-induced fatty liver injury: Role of COX-2 induction British Journal of Pharmacology 2014 171 2 498 508 2-s2.0-84891274062 10.1111/bph.12482 24372551 

  45. 45 Liu S. Jing F. Yu C. Gao L. Qin Y. Zhao J. AICAR-induced activation of AMPK inhibits TSH/SREBP-2/HMGCR pathway in liver PLoS ONE 2015 10 5 2-s2.0-84929119241 10.1371/journal.pone.0124951 e0124951 

  46. 46 Handa P. Maliken B. D. Nelson J. E. Reduced adiponectin signaling due to weight gain results in nonalcoholic steatohepatitis through impaired mitochondrial biogenesis Hepatology 2014 60 1 133 145 2-s2.0-84903171544 10.1002/hep.26946 24464605 

  47. 47 Meirhaeghe A. Crowley V. Lenaghan C. Characterization of the human, mouse and rat PGC1 β (peroxisomeproliferator-activated receptor- γ co-activator 1 β ) gene in vitro and in vivo Biochemical Journal 2003 373 1 155 165 2-s2.0-0038682372 10.1042/BJ20030200 10.1042/bj20030200 12678921 

  48. 48 Hondares E. Pineda-Torra I. Iglesias R. Staels B. Villarroya F. Giralt M. PPAR δ , but not PPAR α , activates PGC-1 α gene transcription in muscle Biochemical and Biophysical Research Communications 2007 354 4 1021 1027 2-s2.0-33846890004 10.1016/j.bbrc.2007.01.092 17275789 

  49. 49 Mensink M. Hesselink M. K. C. Russell A. P. Schaart G. Sels J.-P. Schrauwen P. Improved skeletal muscle oxidative enzyme activity and restoration of PGC-1 α and PPAR β / δ gene expression upon rosiglitazone treatment in obese patients with type 2 diabetes mellitus International Journal of Obesity 2007 31 8 1302 1310 2-s2.0-34547468943 10.1038/sj.ijo.0803567 17310221 

  50. 50 Nagatomo F. Fujino H. Kondo H. The effects of running exercise on oxidative capacity and PGC-1 α mRNA levels in the soleus muscle of rats with metabolic syndrome Journal of Physiological Sciences 2012 62 2 105 114 10.1007/s12576-011-0188-1 2-s2.0-84860714969 22234788 

  51. 51 Li Y. H. Woo S. H. Choi D. H. Cho E.-H. Succinate causes α -SMA production through GPR91 activation in hepatic stellate cells Biochemical and Biophysical Research Communications 2015 463 4 853 858 2-s2.0-84936985287 10.1016/j.bbrc.2015.06.023 26051274 

  52. 52 Wu C. Zhang X. Zhang X. The caffeoylquinic acid-rich Pandanus tectorius fruit extract increases insulin sensitivity and regulates hepatic glucose and lipid metabolism in diabetic db/db mice Journal of Nutritional Biochemistry 2014 25 4 412 419 2-s2.0-84896884306 10.1016/j.jnutbio.2013.12.002 24629909 

  53. 53 Huang K. Liang X.-C. Zhong Y.-L. He W.-Y. Wang Z. 5-Caffeoylquinic acid decreases diet-induced obesity in rats by modulating PPAR α and LXR α transcription Journal of the Science of Food and Agriculture 2015 95 9 1903 1910 2-s2.0-84930684312 10.1002/jsfa.6896 25186103 

LOADING...
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로