$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Preparation of Modified Red Mud-Supported Fe Catalysts for Hydrogen Production by Catalytic Methane Decomposition 원문보기

Journal of nanomaterials, v.2017, 2017년, pp.1 - 11  

Liu, Quanrun (School of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454000, China) ,  Li, Haipeng (School of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454000, China) ,  Fang, Xiaoke (School of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454000, China) ,  Zhang, Jingjie (School of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454000, China) ,  Zhang, Chuanxiang (School of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454000, China) ,  Ma, Mingjie (School of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454000, China) ,  Li, Fenghai (School of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454000, China) ,  Huang, Guangxu (School of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454000, China)

Abstract AI-Helper 아이콘AI-Helper

A modified red mud- (MRM-) supported Fe catalyst (xFe/MRM) was prepared using the homogeneous precipitation method and applied to methane decomposition to produce hydrogen. The TEM and SEM-EDX results suggested that the particle sizes of the xFe/MRM catalysts were much smaller than that of raw red m...

참고문헌 (54)

  1. Trchounian, Karen, Trchounian, Armen. Hydrogen production from glycerol by Escherichia coli and other bacteria: An overview and perspectives. Applied energy, vol.156, 174-184.

  2. He, Yan-Rong, Yan, Fang-Fang, Yu, Han-Qing, Yuan, Shi-Jie, Tong, Zhong-Hua, Sheng, Guo-Ping. Hydrogen production in a light-driven photoelectrochemical cell. Applied energy, vol.113, 164-168.

  3. Balegedde Ramachandran, Ragavendra P., van Rossum, Guus, van Swaaij, Wim. P. M., Kersten, Sascha R. A.. Preliminary Assessment of Synthesis Gas Production via Hybrid Steam Reforming of Methane and Glycerol. Energy & fuels : an American Chemical Society journal, vol.25, no.12, 5755-5766.

  4. Dewoolkar, Karan D., Vaidya, Prakash D.. Improved Hydrogen Production by Sorption-Enhanced Steam Methane Reforming over Hydrotalcite- and Calcium-Based Hybrid Materials. Energy & fuels : an American Chemical Society journal, vol.29, no.6, 3870-3878.

  5. de Abreu, A.J., Lucredio, A.F., Assaf, E.M.. Ni catalyst on mixed support of CeO2-ZrO2 and Al2O3: Effect of composition of CeO2-ZrO2 solid solution on the methane steam reforming reaction. Fuel processing technology, vol.102, 140-145.

  6. Kang, K.M., Kim, H.W., Shim, I.W., Kwak, H.Y.. Catalytic test of supported Ni catalysts with core/shell structure for dry reforming of methane. Fuel processing technology, vol.92, no.6, 1236-1243.

  7. Kathiraser, Y., Oemar, U., Saw, E.T., Li, Z., Kawi, S.. Kinetic and mechanistic aspects for CO2 reforming of methane over Ni based catalysts. Chemical engineering journal, vol.278, 62-78.

  8. Toledo, Mario, González, Freddy, Ellzey, Janet. Hydrogen Production from Methanol and Ethanol Partial Oxidation. Energy & fuels : an American Chemical Society journal, vol.28, no.5, 3453-3459.

  9. Zhang, Kun, Liu, Lihong, Sunarso, Jaka, Yu, Hai, Pareek, Vishnu, Liu, Shaomin. Highly Stable External Short-Circuit-Assisted Oxygen Ionic Transport Membrane Reactor for Carbon Dioxide Reduction Coupled with Methane Partial Oxidation. Energy & fuels : an American Chemical Society journal, vol.28, no.1, 349-355.

  10. Rafiq, M.H., Jakobsen, H.A., Hustad, J.E.. Modeling and simulation of catalytic partial oxidation of methane to synthesis gas by using a plasma-assisted gliding arc reactor. Fuel processing technology, vol.101, 44-57.

  11. Ding, Chuanmin, Liu, Weili, Wang, Junwen, Liu, Ping, Zhang, Kan, Gao, Xiaofeng, Ding, Guangyue, Liu, Shibin, Han, Yulin, Ma, Xishun. One step synthesis of mesoporous NiO–Al2O3 catalyst for partial oxidation of methane to syngas: The role of calcination temperature. Fuel, vol.162, 148-154.

  12. Avdeeva, Lyudmila B, Reshetenko, Tatyana V, Ismagilov, Zinfer R, Likholobov, Vladimir A. Iron-containing catalysts of methane decomposition: accumulation of filamentous carbon. Applied catalysis. A, General, vol.228, no.1, 53-63.

  13. Ibrahim, Ahmed A., Fakeeha, Anis H., Al-Fatesh, Ahmed S., Abasaeed, Ahmed E., Khan, Wasim U.. Methane decomposition over iron catalyst for hydrogen production. International journal of hydrogen energy, vol.40, no.24, 7593-7600.

  14. Takenaka, Sakae, Serizawa, Michio, Otsuka, Kiyoshi. Formation of filamentous carbons over supported Fe catalysts through methane decomposition. Journal of catalysis, vol.222, no.2, 520-531.

  15. Pinilla, J.L., Utrilla, R., Karn, R.K., Suelves, I., Lázaro, M.J., Moliner, R., García, A.B., Rouzaud, J.N.. High temperature iron-based catalysts for hydrogen and nanostructured carbon production by methane decomposition. International journal of hydrogen energy, vol.36, no.13, 7832-7843.

  16. Awadallah, A.E., Aboul-Enein, A.A., Aboul-Gheit, A.K.. Impact of group VI metals addition to Co/MgO catalyst for non-oxidative decomposition of methane into COx-free hydrogen and carbon nanotubes. Fuel, vol.129, 27-36.

  17. Torres, D., Pinilla, J.L., Lazaro, M.J., Moliner, R., Suelves, I.. Hydrogen and multiwall carbon nanotubes production by catalytic decomposition of methane: Thermogravimetric analysis and scaling-up of Fe-Mo catalysts. International journal of hydrogen energy, vol.39, no.8, 3698-3709.

  18. Awadallah, A.E., Mostafa, M.S., Aboul-Enein, A.A., Hanafi, S.A.. Hydrogen production via methane decomposition over Al2O3-TiO2 binary oxides supported Ni catalysts: Effect of Ti content on the catalytic efficiency. Fuel, vol.129, 68-77.

  19. Wang, W., Wang, H., Yang, Y., Jiang, S.. Ni-SiO2 and Ni-Fe-SiO2 catalysts for methane decomposition to prepare hydrogen and carbon filaments. International journal of hydrogen energy, vol.37, no.11, 9058-9066.

  20. Pudukudy, Manoj, Yaakob, Zahira. Methane decomposition over Ni, Co and Fe based monometallic catalysts supported on sol gel derived SiO2 microflakes. Chemical engineering journal, vol.262, 1009-1021.

  21. Wang, H.Y., Lua, A.C.. Deactivation and kinetic studies of unsupported Ni and Ni-Co-Cu alloy catalysts used for hydrogen production by methane decomposition. Chemical engineering journal, vol.243, 79-91.

  22. Lee, S.Y., Kwak, J.H., Han, G.Y., Lee, T.J., Yoon, K.J.. Characterization of active sites for methane decomposition on carbon black through acetylene chemisorption. Carbon, vol.46, no.2, 342-348.

  23. Zhang, Jianbo, Jin, Lijun, He, Xinfu, Liu, Sibao, Hu, Haoquan. Catalytic methane decomposition over activated carbons prepared from direct coal liquefaction residue by KOH activation with addition of SiO2 or SBA-15. International journal of hydrogen energy, vol.36, no.15, 8978-8984.

  24. Muradov, Nazim, Smith, Franklyn, T-Raissi, Ali. Catalytic activity of carbons for methane decomposition reaction. Catalysis today, vol.102, 225-233.

  25. Abbas, Hazzim F., Wan Daud, W.M.A.. Thermocatalytic decomposition of methane using palm shell based activated carbon: Kinetic and deactivation studies. Fuel processing technology, vol.90, no.9, 1167-1174.

  26. Zhang, J., Jin, L., Hu, H., Xun, Y.. Effect of composition in coal liquefaction residue on catalytic activity of the resultant carbon for methane decomposition. Fuel, vol.96, 462-468.

  27. Suelves, I., Pinilla, J.L., Lazaro, M.J., Moliner, R.. Carbonaceous materials as catalysts for decomposition of methane. Chemical engineering journal, vol.140, no.1, 432-438.

  28. Jin, L., Si, H., Zhang, J., Lin, P., Hu, Z., Qiu, B., Hu, H.. Preparation of activated carbon supported Fe-Al2O3 catalyst and its application for hydrogen production by catalytic methane decomposition. International journal of hydrogen energy, vol.38, no.25, 10373-10380.

  29. Zhang, J., Jin, L., Li, Y., Hu, H.. Ni doped carbons for hydrogen production by catalytic methane decomposition. International journal of hydrogen energy, vol.38, no.10, 3937-3947.

  30. Szymanska, M., Malaika, A., Rechnia, P., Miklaszewska, A., Kozlowski, M.. Metal/activated carbon systems as catalysts of methane decomposition reaction. Catalysis today, vol.249, 94-102.

  31. Li, X., Zhu, G., Qi, S., Huang, J., Yang, B.. Simultaneous production of hythane and carbon nanotubes via catalytic decomposition of methane with catalysts dispersed on porous supports. Applied energy, vol.130, 846-852.

  32. Krestinin, A.V., Raevskii, A.V., Kislov, M.B.. Growth rate of carbon filaments during methane pyrolysis on an iron catalyst with analysis using a kinetic–thermodynamic approach. Carbon, vol.46, no.11, 1450-1463.

  33. Pinilla, J.L., Utrilla, R., Lazaro, M.J., Moliner, R., Suelves, I., Garcia, A.B.. Ni- and Fe-based catalysts for hydrogen and carbon nanofilament production by catalytic decomposition of methane in a rotary bed reactor. Fuel processing technology, vol.92, no.8, 1480-1488.

  34. Alvarez, Jorge, Rosal, Roberto, Sastre, Herminio, Dı́ez, Fernando V. Characterization and deactivation studies of an activated sulfided red mud used as hydrogenation catalyst. Applied catalysis. A, General, vol.167, no.2, 215-223.

  35. Halász, János, Hodos, Mária, Hannus, István, Tasi, Gyula, Kiricsi, Imre. Catalytic detoxification of C2-chlorohydrocarbons over iron-containing oxide and zeolite catalysts. Colloids and surfaces. A, Physicochemical and engineering aspects, vol.265, no.1, 171-177.

  36. Sushil, S., Batra, V.S.. Modification of red mud by acid treatment and its application for CO removal. Journal of hazardous materials, vol.203, 264-273.

  37. Ng, P. F., Li, L., Wang, S., Zhu, Z., Lu, G., Yan, Z.. Catalytic Ammonia Decomposition over Industrial-Waste-Supported Ru Catalysts. Environmental science & technology, vol.41, no.10, 3758-3762.

  38. Paredes, J.R, Ordóñez, S, Vega, A, Dı́ez, F.V. Catalytic combustion of methane over red mud-based catalysts. Applied catalysis. B, Environmental, vol.47, no.1, 37-45.

  39. Balakrishnan, M., Batra, V. S., Hargreaves, J. S. J., Monaghan, A., Pulford, I. D., Rico, J. L., Sushil, S.. Hydrogen production from methane in the presence of red mud –making mud magnetic. Green chemistry : an international journal and green chemistry resource : GC, vol.11, no.1, 42-47.

  40. 10.1155/2016/6947636 

  41. Cao, Jian-Liang, Yan, Zhao-Li, Deng, Qing-Fang, Wang, Yan, Yuan, Zhong-Yong, Sun, Guang, Jia, Tie-Kun, Wang, Xiao-Dong, Bala, Hari, Zhang, Zhan-Ying. Mesoporous modified-red-mud supported Ni catalysts for ammonia decomposition to hydrogen. International journal of hydrogen energy, vol.39, no.11, 5747-5755.

  42. Sushil, S., Alabdulrahman, A.M., Balakrishnan, M., Batra, V.S., Blackley, R.A., Clapp, J., Hargreaves, J.S.J., Monaghan, A., Pulford, I.D., Rico, J.L., Zhou, W.. Carbon deposition and phase transformations in red mud on exposure to methane. Journal of hazardous materials, vol.180, no.1, 409-418.

  43. Alp, A.; Goral, M. S. etc. "The influence of soda additive on the thermal properties of red mud." Journal of thermal analysis and calorimetry, v.73 no.1 (2003), pp. 201-207, doi:10.1023/A:1025197927673.

  44. Atasoy, A.. An investigation on characterization and thermal analysis of the Aughinish red mud. Journal of thermal analysis and calorimetry, vol.81, no.2, 357-361.

  45. Nath, H., Sahoo, P., Sahoo, A.. Characterization of Red Mud treated under high temperature fluidization. Powder technology, vol.269, 233-239.

  46. Industrial & Engineering Chemistry Research 51 2 775 2012 10.1021/ie201700k 

  47. El-Shobaky, H.G., Mokhtar, M.M.. Effect of Li2O and CoO-doping of CuO/Fe2O3 system on its surface and catalytic properties. Applied surface science, vol.253, no.24, 9407-9413.

  48. 10.1016/s0926-860x(01)00593-2 

  49. Reshetenko, T.V, Avdeeva, L.B, Ushakov, V.A, Moroz, E.M, Shmakov, A.N, Kriventsov, V.V, Kochubey, D.I, Pavlyukhin, Yu.T, Chuvilin, A.L, Ismagilov, Z.R. Coprecipitated iron-containing catalysts (Fe-Al2O3, Fe-Co-Al2O3, Fe-Ni-Al2O3) for methane decomposition at moderate temperatures : Part II. Evolution of the catalysts in reaction. Applied catalysis. A, General, vol.270, no.1, 87-99.

  50. Abbas, H.F., Wan Daud, W.M.A.. Hydrogen production by methane decomposition: A review. International journal of hydrogen energy, vol.35, no.3, 1160-1190.

  51. Li, Yong, Zhang, Baocai, Xie, Xiaowei, Liu, Junlong, Xu, Yide, Shen, Wenjie. Novel Ni catalysts for methane decomposition to hydrogen and carbon nanofibers. Journal of catalysis, vol.238, no.2, 412-424.

  52. Takenaka, Sakae, Kato, Emi, Tomikubo, Yo, Otsuka, Kiyoshi. Structural change of Ni species during the methane decomposition and the subsequent gasification of deposited carbon with CO2 over supported Ni catalysts. Journal of catalysis, vol.219, no.1, 176-185.

  53. 10.1016/s0926-860x(00)00433-6 

  54. Otsuka, Kiyoshi, Ogihara, Hitoshi, Takenaka, Sakae. Decomposition of methane over Ni catalysts supported on carbon fibers formed from different hydrocarbons. Carbon, vol.41, no.2, 223-233.

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로