$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Current Perspectives regarding Stem Cell-Based Therapy for Alzheimer's Disease 원문보기

Stem cells international, v.2018, 2018년, pp.6392986 -   

Kwak, Kyeong-Ah (Department of Oral Anatomy, Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Republic of Korea) ,  Lee, Seung-Pyo (Department of Oral Anatomy, Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Republic of Korea) ,  Yang, Jin-Young (Department of Dental Hygiene, Daejeon Institute of Science and Technology, Daejeon, Republic of Korea) ,  Park, Young-Seok (Department of Oral Anatomy, Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Republic of Korea)

Abstract AI-Helper 아이콘AI-Helper

Alzheimer's disease (AD), a progressive neurodegenerative disorder featuring memory loss and cognitive impairment, is caused by synaptic failure and the excessive accumulation of misfolded proteins. Many unsuccessful attempts have been made to develop new small molecules or antibodies to intervene i...

참고문헌 (233)

  1. 1 Hong J. Jin H. Han J. Infusion of human umbilical cord-derived mesenchymal stem cells effectively relieves liver cirrhosis in DEN-induced rats Molecular Medicine Reports 2014 9 4 1103 1111 10.3892/mmr.2014.1927 2-s2.0-84896508666 24481983 

  2. 2 Burns A. Byrne E. J. Maurer K. Alzheimer’s disease Lancet 2002 360 9327 163 165 10.1016/S0140-6736(02)09420-5 2-s2.0-0037072064 12126840 

  3. 3 Lunn J. S. Sakowski S. A. Hur J. Feldman E. L. Stem cell technology for neurodegenerative diseases Annals of Neurology 2011 70 3 353 361 10.1002/ana.22487 2-s2.0-80052579667 21905078 

  4. 4 Huang Y. Mucke L. Alzheimer mechanisms and therapeutic strategies Cell 2012 148 6 1204 1222 10.1016/j.cell.2012.02.040 2-s2.0-84863337843 22424230 

  5. 5 Selkoe D. J. Alzheimer’s disease: genes, proteins, and therapy Physiological Reviews 2001 81 2 741 766 10.1152/physrev.2001.81.2.741 11274343 

  6. 6 Selkoe D. J. Alzheimer’s disease is a synaptic failure Science 2002 298 5594 789 791 10.1126/science.1074069 2-s2.0-0037174618 12399581 

  7. 7 Nussbaum R. L. Ellis C. E. Alzheimer’s disease and Parkinson’s disease The New England Journal of Medicine 2003 348 14 1356 1364 10.1056/NEJM2003ra020003 2-s2.0-0037417254 12672864 

  8. 8 Reitz C. Brayne C. Mayeux R. Epidemiology of Alzheimer disease Nature Reviews Neurology 2011 7 3 137 152 10.1038/nrneurol.2011.2 2-s2.0-79952574501 21304480 

  9. 9 Doraiswamy P. M. Sperling R. A. Johnson K. Florbetapir F 18 amyloid PET and 36-month cognitive decline: a prospective multicenter study Molecular Psychiatry 2014 19 9 1044 1051 10.1038/mp.2014.9 2-s2.0-84905557091 24614494 

  10. 10 James O. G. Doraiswamy P. M. Borges-Neto S. PET imaging of tau pathology in Alzheimer’s disease and tauopathies Frontiers in Neurology 2015 6 p. 38 10.3389/fneur.2015.00038 2-s2.0-84926343686 

  11. 11 Sperling R. A. Aisen P. S. Beckett L. A. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease Alzheimers Dement 2011 7 3 280 292 10.1016/j.jalz.2011.03.003 2-s2.0-79956098248 21514248 

  12. 12 Prasher V. P. Farrer M. J. Kessling A. M. Molecular mapping of Alzheimer-type dementia in Down’s syndrome Annals of Neurology 1998 43 3 380 383 10.1002/ana.410430316 2-s2.0-0031939059 9506555 

  13. 13 Ashe K. H. Zahs K. R. Probing the biology of Alzheimer’s disease in mice Neuron 2010 66 5 631 645 10.1016/j.neuron.2010.04.031 2-s2.0-77953675879 20547123 

  14. 14 Bertram L. Lill C. M. Tanzi R. E. The genetics of Alzheimer disease: back to the future Neuron 2010 68 2 270 281 10.1016/j.neuron.2010.10.013 2-s2.0-77957927865 20955934 

  15. 15 Genin E. Hannequin D. Wallon D. APOE and Alzheimer disease: a major gene with semi-dominant inheritance Molecular Psychiatry 2011 16 9 903 907 10.1038/mp.2011.52 2-s2.0-80052070571 21556001 

  16. 16 Marchetti C. Marie H. Hippocampal synaptic plasticity in Alzheimer’s disease: what have we learned so far from transgenic models? Reviews in the Neurosciences 2011 22 4 373 402 10.1515/RNS.2011.035 2-s2.0-80051750907 21732714 

  17. 17 Palop J. J. Mucke L. Amyloid- β –induced neuronal dysfunction in Alzheimer’s disease: from synapses toward neural networks Nature Neuroscience 2010 13 7 812 818 10.1038/nn.2583 2-s2.0-77954132249 20581818 

  18. 18 Querfurth H. W. LaFerla F. M. Alzheimer’s disease The New England Journal of Medicine 2010 362 4 329 344 10.1056/NEJMra0909142 2-s2.0-75449102536 20107219 

  19. 19 Duncan T. Valenzuela M. Alzheimer’s disease, dementia, and stem cell therapy Stem Cell Research & Therapy 2017 8 1 p. 111 10.1186/s13287-017-0567-5 2-s2.0-85018871078 28494803 

  20. 20 Persson T. Popescu B. O. Cedazo-Minguez A. Oxidative stress in Alzheimer’s disease: why did antioxidant therapy fail? Oxidative Medicine and Cellular Longevity 2014 2014 11 427318 10.1155/2014/427318 2-s2.0-84893171400 

  21. 21 Allen S. J. Watson J. J. Dawbarn D. The neurotrophins and their role in Alzheimer’s disease Current Neuropharmacology 2011 9 4 559 573 10.2174/157015911798376190 22654716 

  22. 22 Eckman C. B. Eckman E. A. An update on the amyloid hypothesis Neurologic Clinics 2007 25 3 669 682 10.1016/j.ncl.2007.03.007 2-s2.0-34447345415 17659184 

  23. 23 Kuhla B. Haase C. Flach K. Luth H. J. Arendt T. Munch G. Effect of pseudophosphorylation and cross-linking by lipid peroxidation and advanced glycation end product precursors on tau aggregation and filament formation Journal of Biological Chemistry 2007 282 10 6984 6991 10.1074/jbc.M609521200 2-s2.0-34147135482 17082178 

  24. 24 Demuro A. Smith M. Parker I. Single-channel Ca 2+ imaging implicates A β 1–42 amyloid pores in Alzheimer’s disease pathology Journal of Cell Biology 2011 195 3 515 524 10.1083/jcb.201104133 2-s2.0-84855750207 22024165 

  25. 25 Patel A. N. Jhamandas J. H. Neuronal receptors as targets for the action of amyloid-beta protein (A β ) in the brain Expert Reviews in Molecular Medicine 2012 14, article e2 10.1017/S1462399411002134 2-s2.0-84859070489 

  26. 26 Wenk G. L. Neuropathologic changes in Alzheimer’s disease Journal of Clinical Psychiatry 2003 64 Supplement 9 7 10 

  27. 27 Farrer L. A. Cupples L. A. Haines J. L. Effects of age, sex, and ethnicity on the association between apolipoprotein E genotype and Alzheimer disease: a meta-analysis. APOE and Alzheimer Disease Meta Analysis Consortium JAMA 1997 278 16 1349 1356 10.1001/jama.1997.03550160069041 9343467 

  28. 28 Huang Y. Apolipoprotein E and Alzheimer disease Neurology 2006 66 Supplement 1 S79 S85 10.1212/01.wnl.0000192102.41141.9e 16432152 

  29. 29 Kim S. U. de Vellis J. Stem cell-based cell therapy in neurological diseases: a review Journal of Neuroscience Researsch 2009 87 10 2183 2200 10.1002/jnr.22054 2-s2.0-69249220421 19301431 

  30. 30 Eikelenboom P. Bate C. Van Gool W. A. Neuroinflammation in Alzheimer’s disease and prion disease Glia 2002 40 2 232 239 10.1002/glia.10146 2-s2.0-0036850023 12379910 

  31. 31 Millington C. Sonego S. Karunaweera N. Chronic neuroinflammation in Alzheimer’s disease: new perspectives on animal models and promising candidate drugs BioMed Research International 2014 2014 10 309129 10.1155/2014/309129 2-s2.0-84904123632 

  32. 32 Baune B. T. Ponath G. Rothermundt M. Roesler A. Berger K. Association between cytokines and cerebral MRI changes in the aging brain Journal of Geriatric Psychiatry and Neurology 2009 22 1 23 34 10.1177/0891988708328216 2-s2.0-63049124965 19196630 

  33. 33 Delbeuck X. Van der Linden M. Collette F. Alzheimer’s disease as a disconnection syndrome? Neuropsychology Review 2003 13 2 79 92 10.1023/A:1023832305702 2-s2.0-0142259257 12887040 

  34. 34 Münch G. Schinzel R. Loske C. Alzheimer’s disease – synergistic effects of glucose deficit, oxidative stress and advanced glycation endproducts Journal of Neural Transmission 1998 105 4 439 461 10.1007/s007020050069 2-s2.0-0042611250 9720973 

  35. 35 Walker D. G. Lue L. F. Investigations with cultured human microglia on pathogenic mechanisms of Alzheimer’s disease and other neurodegenerative diseases Journal of Neuroscience Research 2005 81 3 412 425 10.1002/jnr.20484 2-s2.0-25444505871 15957156 

  36. 36 Bernard V. Decossas M. Liste I. Bloch B. Intraneuronal trafficking of G-protein-coupled receptors in vivo Trends in Neurosciences 2006 29 3 140 147 10.1016/j.tins.2006.01.006 2-s2.0-33644501768 16443287 

  37. 37 Cha M. Y. Han S. H. Son S. M. Mitochondria-specific accumulation of amyloid β induces mitochondrial dysfunction leading to apoptotic cell death PLoS One 2012 7 4, article e34929 10.1371/journal.pone.0034929 2-s2.0-84859709003 22514691 

  38. 38 Federico A. Cardaioli E. Da Pozzo P. Formichi P. Gallus G. N. Radi E. Mitochondria, oxidative stress and neurodegeneration Journal of the Neurological Sciences 2012 322 1-2 254 262 10.1016/j.jns.2012.05.030 2-s2.0-84867578930 22669122 

  39. 39 Jones D. P. Radical-free biology of oxidative stress American Journal of Physiology-Cell Physiology 2008 295 4 C849 C868 10.1152/ajpcell.00283.2008 2-s2.0-55149107716 18684987 

  40. 40 Meraz-Ríos M. A. Toral-Rios D. Franco-Bocanegra D. Villeda-Hernández J. Campos-Peña V. Inflammatory process in Alzheimer’s disease Frontiers in Integrative Neuroscience 2013 7 p. 59 10.3389/fnint.2013.00059 2-s2.0-84882665749 

  41. 41 Wilkinson D. G. Francis P. T. Schwam E. Payne-Parrish J. Cholinesterase inhibitors used in the treatment of Alzheimer’s disease: the relationship between pharmacological effects and clinical efficacy Drugs & Aging 2004 21 7 453 478 10.2165/00002512-200421070-00004 2-s2.0-2942514710 15132713 

  42. 42 Brosh I. Barkai E. Learning-induced enhancement of feedback inhibitory synaptic transmission Learning & Memory 2009 16 7 413 416 10.1101/lm.1430809 2-s2.0-67649619342 19546230 

  43. 43 Celone K. A. Calhoun V. D. Dickerson B. C. Alterations in memory networks in mild cognitive impairment and Alzheimer’s disease: an independent component analysis The Journal of Neuroscience 2006 26 40 10222 10231 10.1523/JNEUROSCI.2250-06.2006 2-s2.0-33749522545 17021177 

  44. 44 Cui Y. Costa R. M. Murphy G. G. Neurofibromin regulation of ERK signaling modulates GABA release and learning Cell 2008 135 3 549 560 10.1016/j.cell.2008.09.060 2-s2.0-54549106766 18984165 

  45. 45 Dickerson B. C. Salat D. H. Bates J. F. Medial temporal lobe function and structure in mild cognitive impairment Annals of Neurology 2004 56 1 27 35 10.1002/ana.20163 2-s2.0-3042714810 15236399 

  46. 46 Dickerson B. C. Salat D. H. Greve D. N. Increased hippocampal activation in mild cognitive impairment compared to normal aging and AD Neurology 2005 65 3 404 411 10.1212/01.wnl.0000171450.97464.49 2-s2.0-23244445918 16087905 

  47. 47 Hämäläinen A. Pihlajamäki M. Tanila H. Increased fMRI responses during encoding in mild cognitive impairment Neurobiology of Aging 2007 28 12 1889 1903 10.1016/j.neurobiolaging.2006.08.008 2-s2.0-35148881227 16997428 

  48. 48 Jasinska M. Siucinska E. Cybulska-Klosowicz A. Rapid, learning-induced inhibitory synaptogenesis in murine barrel field The Journal of Neuroscience 2010 30 3 1176 1184 10.1523/JNEUROSCI.2970-09.2010 2-s2.0-76649142016 20089926 

  49. 49 Meilandt W. J. Yu G. Q. Chin J. Enkephalin elevations contribute to neuronal and behavioral impairments in a transgenic mouse model of Alzheimer’s disease The Journal of Neuroscience 2008 28 19 5007 5017 10.1523/JNEUROSCI.0590-08.2008 2-s2.0-44949184540 18463254 

  50. 50 Nitz D. McNaughton B. Differential modulation of CA1 and dentate gyrus interneurons during exploration of novel environments Journal of Neurophysiology 2004 91 2 863 872 10.1152/jn.00614.2003 2-s2.0-0842306353 14523073 

  51. 51 Sanchez-Mejia R. O. Newman J. W. Toh S. Phospholipase A 2 reduction ameliorates cognitive deficits in a mouse model of Alzheimer’s disease Nature Neuroscience 2008 11 11 1311 1318 10.1038/nn.2213 2-s2.0-54949130109 18931664 

  52. 52 Verret L. Mann E. O. Hang G. B. Inhibitory interneuron deficit links altered network activity and cognitive dysfunction in Alzheimer model Cell 2012 149 3 708 721 10.1016/j.cell.2012.02.046 2-s2.0-84860334015 22541439 

  53. 53 Salloway S. Sperling R. Fox N. C. Two phase 3 trials of bapineuzumab in mild-to-moderate Alzheimer’s disease The New England Journal of Medicine 2014 370 4 322 333 10.1056/NEJMoa1304839 2-s2.0-84892695519 24450891 

  54. 54 Doody R. S. Raman R. Farlow M. A phase 3 trial of semagacestat for treatment of Alzheimer’s disease The New England Journal of Medicine 2013 369 4 341 350 10.1056/NEJMoa1210951 2-s2.0-84880712325 23883379 

  55. 55 Golde T. E. Schneider L. S. Koo E. H. Anti-a β therapeutics in Alzheimer’s disease: the need for a paradigm shift Neuron 2011 69 2 203 213 10.1016/j.neuron.2011.01.002 2-s2.0-78751692575 21262461 

  56. 56 Hardy J. Allsop D. Amyloid deposition as the central event in the aetiology of Alzheimer’s disease Trends in Pharmacological Sciences 1991 12 10 383 388 10.1016/0165-6147(91)90609-V 2-s2.0-0025899041 1763432 

  57. 57 Birks J. Grimley Evans J. Iakovidou V. Tsolaki M. Rivastigmine for Alzheimer’s disease Cochrane Database of Systematic Reviews 2000 4, article CD001191 10.1002/14651858.CD001191 10796621 

  58. 58 Birks J. Harvey R. J. Donepezil for dementia due to Alzheimer’s disease Cochrane Database of Systematic Reviews 2006 1, article CD001190 10.1002/14651858.cd001190.pub2 2-s2.0-37649026816 

  59. 59 Loy C. Schneider L. Galantamine for Alzheimer’s disease and mild cognitive impairment Cochrane Database of Systematic Reviews 2006 1, article CD001747 10.1002/14651858.cd001747.pub3 

  60. 60 Aisen P. Gauthier S. Vellas B. Alzhemed: a potential treatment for Alzheimer’s disease Current Alzheimer Research 2007 4 4 473 478 10.2174/156720507781788882 2-s2.0-34548689646 17908052 

  61. 61 Green R. C. Schneider L. S. Amato D. A. Effect of tarenflurbil on cognitive decline and activities of daily living in patients with mild Alzheimer disease: a randomized controlled trial JAMA 2009 302 23 2557 2564 10.1001/jama.2009.1866 2-s2.0-72549105935 20009055 

  62. 62 Salloway S. Sperling R. Brashear H. R. Phase 3 trials of solanezumab and bapineuzumab for Alzheimer’s disease The New England Journal of Medicine 2014 370 15 p. 1460 24724181 

  63. 63 Coric V. van Dyck C. H. Salloway S. Safety and tolerability of the γ -secretase inhibitor avagacestat in a phase 2 study of mild to moderate Alzheimer disease Archives of Neurology 2012 69 11 1430 1440 10.1001/archneurol.2012.2194 2-s2.0-84868516038 22892585 

  64. 64 Dodel R. Rominger A. Bartenstein P. Intravenous immunoglobulin for treatment of mild-to-moderate Alzheimer’s disease: a phase 2, randomised, double-blind, placebo-controlled, dose-finding trial The Lancet Neurology 2013 12 3 233 243 10.1016/S1474-4422(13)70014-0 2-s2.0-84876307732 23375965 

  65. 65 Doody R. S. Thomas R. G. Farlow M. Phase 3 trials of solanezumab for mild-to-moderate Alzheimer’s disease The New England Journal of Medicine 2014 370 4 311 321 10.1056/NEJMoa1312889 2-s2.0-84892748542 24450890 

  66. 66 Salloway S. Sperling R. Keren R. A phase 2 randomized trial of ELND005, scyllo-inositol, in mild to moderate Alzheimer disease Neurology 2011 77 13 1253 1262 10.1212/WNL.0b013e3182309fa5 2-s2.0-82255179817 21917766 

  67. 67 Siemers E. R. Sundell K. L. Carlson C. Phase 3 solanezumab trials: secondary outcomes in mild Alzheimer’s disease patients Alzheimer’s & Dementia 2016 12 2 110 120 10.1016/j.jalz.2015.06.1893 2-s2.0-84957838627 26238576 

  68. 68 Kile S. Au W. Parise C. IVIG treatment of mild cognitive impairment due to Alzheimer’s disease: a randomised double-blinded exploratory study of the effect on brain atrophy, cognition and conversion to dementia Journal of Neurology, Neurosurgery & Psychiatry 2017 88 2 106 112 10.1136/jnnp-2015-311486 2-s2.0-85011711448 

  69. 69 Kryscio R. J. Abner E. L. Schmitt F. A. A randomized controlled Alzheimer’s disease prevention trial’s evolution into an exposure trial: the PREADViSE trial The Journal of Nutrition, Health & Aging 2013 17 1 72 75 10.1007/s12603-013-0004-0 2-s2.0-85027924487 

  70. 70 Peters R. Beckett N. Forette F. Incident dementia and blood pressure lowering in the hypertension in the Very Elderly Trial cognitive function assessment (HYVET-COG): a double-blind, placebo controlled trial The Lancet Neurology 2008 7 8 683 689 10.1016/S1474-4422(08)70143-1 2-s2.0-46949106968 18614402 

  71. 71 ADAPT Research Group Lyketsos C. G. Breitner J. C. Naproxen and celecoxib do not prevent AD in early results from a randomized controlled trial Neurology 2007 68 21 1800 1808 10.1212/01.wnl.0000260269.93245.d2 2-s2.0-34249058674 17460158 

  72. 72 DeKosky S. T. Williamson J. D. Fitzpatrick A. L. Ginkgo biloba for prevention of dementia: a randomized controlled trial JAMA 2008 300 19 2253 2262 10.1001/jama.2008.683 2-s2.0-56649112752 19017911 

  73. 73 Vellas B. Coley N. Ousset P. J. Long-term use of standardised ginkgo biloba extract for the prevention of Alzheimer’s disease (GuidAge): a randomised placebo-controlled trial The Lancet Neurology 2012 11 10 851 859 10.1016/S1474-4422(12)70206-5 2-s2.0-84866445630 22959217 

  74. 74 Liu A. K. L. Stem cell therapy for Alzheimer’s disease: hype or hope? Bioscience Horizons 2013 6, article hzt011 10.1093/biohorizons/hzt011 2-s2.0-84893877486 

  75. 75 Park D. Yang Y. H. Bae D. K. Improvement of cognitive function and physical activity of aging mice by human neural stem cells over-expressing choline acetyltransferase Neurobiology of Aging 2013 34 11 2639 2646 10.1016/j.neurobiolaging.2013.04.026 2-s2.0-84881550650 23731954 

  76. 76 Martínez-Morales P. L. Revilla A. Ocaña I. Progress in stem cell therapy for major human neurological disorders Stem Cell Reviews and Reports 2013 9 5 685 699 10.1007/s12015-013-9443-6 2-s2.0-84884819372 23681704 

  77. 77 Enciu A. M. Nicolescu M. I. Manole C. G. Mureşanu D. F. Popescu L. M. Popescu B. O. Neuroregeneration in neurodegenerative disorders BMC Neurology 2011 11 1 p. 75 10.1186/1471-2377-11-75 2-s2.0-79959448007 

  78. 78 Park D. Yang G. Bae D. K. Human adipose tissue-derived mesenchymal stem cells improve cognitive function and physical activity in ageing mice Journal of Neuroscience Research 2013 91 5 660 670 10.1002/jnr.23182 2-s2.0-84874806549 23404260 

  79. 79 Antonic A. Sena E. S. Lees J. S. Stem cell transplantation in traumatic spinal cord injury: a systematic review and meta-analysis of animal studies PLoS Biology 2013 11 12, article e1001738 10.1371/journal.pbio.1001738 2-s2.0-84892773437 24358022 

  80. 80 Chang K. A. Lee J. H. Suh Y. H. Therapeutic potential of human adipose-derived stem cells in neurological disorders Journal of Pharmacological Sciences 2014 126 4 293 301 10.1254/jphs.14R10CP 2-s2.0-84920854087 25409785 

  81. 81 Gage F. H. Mammalian neural stem cells Science 2000 287 5457 1433 1438 10.1126/science.287.5457.1433 2-s2.0-0034712047 10688783 

  82. 82 Mezey E. The therapeutic potential of bone marrow-derived stromal cells Journal of Cellular Biochemistry 2011 112 10 2683 2687 10.1002/jcb.23216 2-s2.0-80053176419 21678464 

  83. 83 Wernig M. Zhao J. P. Pruszak J. Neurons derived from reprogrammed fibroblasts functionally integrate into the fetal brain and improve symptoms of rats with Parkinson’s disease Proceedings of the National Academy of Sciences of the United States of America 2008 105 15 5856 5861 10.1073/pnas.0801677105 2-s2.0-42649130264 18391196 

  84. 84 Liu Y. Weick J. P. Liu H. Medial ganglionic eminence-like cells derived from human embryonic stem cells correct learning and memory deficits Nature Biotechnology 2013 31 5 440 447 10.1038/nbt.2565 2-s2.0-84877342649 23604284 

  85. 85 Arvidsson A. Collin T. Kirik D. Kokaia Z. Lindvall O. Neuronal replacement from endogenous precursors in the adult brain after stroke Nature Medicine 2002 8 9 963 970 10.1038/nm747 2-s2.0-0036735672 12161747 

  86. 86 Deierborg T. Staflin K. Pesic J. Roybon L. Brundin P. Lundberg C. Absence of striatal newborn neurons with mature phenotype following defined striatal and cortical excitotoxic brain injuries Experimental Neurology 2009 219 1 363 367 10.1016/j.expneurol.2009.05.002 2-s2.0-68749099422 19427853 

  87. 87 Gilman S. Pharmacologic management of ischemic stroke: relevance to stem cell therapy Experimental Neurology 2006 199 1 28 36 10.1016/j.expneurol.2006.03.002 2-s2.0-33745205694 16631744 

  88. 88 Nygren J. Wieloch T. Pesic J. Brundin P. Deierborg T. Enriched environment attenuates cell genesis in subventricular zone after focal ischemia in mice and decreases migration of newborn cells to the striatum Stroke 2006 37 11 2824 2829 10.1161/01.STR.0000244769.39952.90 2-s2.0-33750945702 17008628 

  89. 89 Sullivan R. Duncan K. Dailey T. Kaneko Y. Tajiri N. Borlongan C. V. A possible new focus for stroke treatment – migrating stem cells Expert Opinion on Biological Therapy 2015 15 7 949 958 10.1517/14712598.2015.1043264 2-s2.0-84931062159 25943632 

  90. 90 Zhang J. Chopp M. Cell-based therapy for ischemic stroke Expert Opinion on Biological Therapy 2013 13 9 1229 1240 10.1517/14712598.2013.804507 2-s2.0-84881512042 23738646 

  91. 91 Lindvall O. Kokaia Z. Stem cells in human neurodegenerative disorders - time for clinical translation? The Journal of Clinical Investigation 2010 120 1 29 40 10.1172/JCI40543 2-s2.0-74949087489 20051634 

  92. 92 Jin K. Zhu Y. Sun Y. Mao X. O. Xie L. Greenberg D. A. Vascular endothelial growth factor (VEGF) stimulates neurogenesis in vitro and in vivo Proceedings of the National Academy of Sciences of the United States of America 2002 99 18 11946 11950 10.1073/pnas.182296499 2-s2.0-0037015059 12181492 

  93. 93 Donovan M. H. Yazdani U. Norris R. D. Games D. German D. C. Eisch A. J. Decreased adult hippocampal neurogenesis in the PDAPP mouse model of Alzheimer’s disease The Journal of Comparative Neurology 2006 495 1 70 83 10.1002/cne.20840 2-s2.0-32544460592 16432899 

  94. 94 Lopez-Toledano M. A. Shelanski M. L. Increased neurogenesis in young transgenic mice overexpressing human APP Sw, Ind Journal of Alzheimer’s Disease 2007 12 3 229 240 10.3233/JAD-2007-12304 2-s2.0-36549009057 18057556 

  95. 95 Thomson J. A. Itskovitz-Eldor J. Shapiro S. S. Embryonic stem cell lines derived from human blastocysts Science 1998 282 5391 1145 1147 10.1126/science.282.5391.1145 9804556 

  96. 96 Chambers S. M. Fasano C. A. Papapetrou E. P. Tomishima M. Sadelain M. Studer L. Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling Nature Biotechnology 2009 27 3 275 280 10.1038/nbt.1529 2-s2.0-62149125434 19252484 

  97. 97 Hu B. Y. Zhang S. C. Differentiation of spinal motor neurons from pluripotent human stem cells Nature Protocols 2009 4 9 1295 1304 10.1038/nprot.2009.127 2-s2.0-70249133666 19696748 

  98. 98 Krencik R. Weick J. P. Liu Y. Zhang Z. J. Zhang S. C. Specification of transplantable astroglial subtypes from human pluripotent stem cells Nature Biotechnology 2011 29 6 528 534 10.1038/nbt.1877 2-s2.0-79958128131 21602806 

  99. 99 Kriks S. Shim J.-W. Piao J. Dopamine neurons derived from human ES cells efficiently engraft in animal models of Parkinson’s disease Nature 2011 480 7378 547 551 10.1038/nature10648 2-s2.0-84355166561 22056989 

  100. 100 Lee H. Shamy G. A. Elkabetz Y. Directed differentiation and transplantation of human embryonic stem cell-derived motoneurons Stem Cells 2007 25 8 1931 1939 10.1634/stemcells.2007-0097 2-s2.0-34547858511 17478583 

  101. 101 Malmersjo S. Liste I. Dyachok O. Tengholm A. Arenas E. Uhlen P. Ca 2+ and cAMP signaling in human embryonic stem cell–derived dopamine neurons Stem Cells and Development 2010 19 9 1355 1364 10.1089/scd.2009.0436 2-s2.0-77956449629 20043754 

  102. 102 Sacchetti P. Sousa K. M. Hall A. C. Liver X receptors and oxysterols promote ventral midbrain neurogenesis in vivo and in human embryonic stem cells Cell Stem Cell 2009 5 4 409 419 10.1016/j.stem.2009.08.019 2-s2.0-70349309626 19796621 

  103. 103 Bissonnette C. J. Lyass L. Bhattacharyya B. J. Belmadani A. Miller R. J. Kessler J. A. The controlled generation of functional basal forebrain cholinergic neurons from human embryonic stem cells Stem Cells 2011 29 5 802 811 10.1002/stem.626 2-s2.0-79955411486 21381151 

  104. 104 Cho M. S. Lee Y. E. Kim J. Y. Highly efficient and large-scale generation of functional dopamine neurons from human embryonic stem cells Proceedings of the National Academy of Sciences of the United States of America 2008 105 9 3392 3397 10.1073/pnas.0712359105 2-s2.0-42149107420 18305158 

  105. 105 Koch P. Opitz T. Steinbeck J. A. Ladewig J. Brustle O. A rosette-type, self-renewing human ES cell-derived neural stem cell with potential for in vitro instruction and synaptic integration Proceedings of the National Academy of Sciences of the United States of America 2009 106 9 3225 3230 10.1073/pnas.0808387106 2-s2.0-62549127853 19218428 

  106. 106 Condic M. L. Rao M. Alternative sources of pluripotent stem cells: ethical and scientific issues revisited Stem Cells and Development 2010 19 8 1121 1129 10.1089/scd.2009.0482 2-s2.0-77953873573 20397928 

  107. 107 Liras A. Future research and therapeutic applications of human stem cells: general, regulatory, and bioethical aspects Journal of Translational Medicine 2010 8 1 p. 131 10.1186/1479-5876-8-131 2-s2.0-78650846277 21143967 

  108. 108 Takahashi K. Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors Cell 2006 126 4 663 676 10.1016/j.cell.2006.07.024 2-s2.0-33747195353 16904174 

  109. 109 Cooper O. Hargus G. Deleidi M. Differentiation of human ES and Parkinson’s disease iPS cells into ventral midbrain dopaminergic neurons requires a high activity form of SHH, FGF8a and specific regionalization by retinoic acid Molecular and Cellular Neuroscience 2010 45 3 258 266 10.1016/j.mcn.2010.06.017 2-s2.0-77956613688 20603216 

  110. 110 Nori S. Okada Y. Yasuda A. Grafted human-induced pluripotent stem-cell–derived neurospheres promote motor functional recovery after spinal cord injury in mice Proceedings of the National Academy of Sciences of the United States of America 2011 108 40 16825 16830 10.1073/pnas.1108077108 2-s2.0-80053628732 21949375 

  111. 111 Paull D. Sevilla A. Zhou H. Automated, high-throughput derivation, characterization and differentiation of induced pluripotent stem cells Nature Methods 2015 12 9 885 892 10.1038/nmeth.3507 2-s2.0-84940601627 26237226 

  112. 112 Kim T. G. Yao R. Monnell T. Efficient specification of interneurons from human pluripotent stem cells by dorsoventral and rostrocaudal modulation Stem Cells 2014 32 7 1789 1804 10.1002/stem.1704 2-s2.0-84902581238 24648391 

  113. 113 Maroof A. M. Keros S. Tyson J. A. Directed differentiation and functional maturation of cortical interneurons from human embryonic stem cells Cell Stem Cell 2013 12 5 559 572 10.1016/j.stem.2013.04.008 2-s2.0-84877271854 23642365 

  114. 114 Nicholas C. R. Chen J. Tang Y. Functional maturation of hPSC-derived forebrain interneurons requires an extended timeline and mimics human neural development Cell Stem Cell 2013 12 5 573 586 10.1016/j.stem.2013.04.005 2-s2.0-84877301288 23642366 

  115. 115 Holtman I. R. Raj D. D. Miller J. A. Induction of a common microglia gene expression signature by aging and neurodegenerative conditions: a co-expression meta-analysis Acta Neuropathologica Communications 2015 3 1 p. 31 10.1186/s40478-015-0203-5 2-s2.0-85018223217 

  116. 116 Takamatsu K. Ikeda T. Haruta M. Degradation of amyloid beta by human induced pluripotent stem cell-derived macrophages expressing Neprilysin-2 Stem Cell Research 2014 13 3 Part A 442 453 10.1016/j.scr.2014.10.001 2-s2.0-84908461163 25460605 

  117. 117 Araki R. Uda M. Hoki Y. Negligible immunogenicity of terminally differentiated cells derived from induced pluripotent or embryonic stem cells Nature 2013 494 7435 100 104 10.1038/nature11807 2-s2.0-84874682918 23302801 

  118. 118 Hibaoui Y. Feki A. Human pluripotent stem cells: applications and challenges in neurological diseases Frontiers in Physiology 2012 3 p. 267 10.3389/fphys.2012.00267 2-s2.0-84866436991 

  119. 119 Lister R. Pelizzola M. Kida Y. S. Hotspots of aberrant epigenomic reprogramming in human induced pluripotent stem cells Nature 2011 471 7336 68 73 10.1038/nature09798 2-s2.0-79952264847 21289626 

  120. 120 Tolosa L. Pareja E. Gomez-Lechon M. J. Clinical application of pluripotent stem cells: an alternative cell-based therapy for treating liver diseases? Transplantation 2016 100 12 2548 2557 10.1097/TP.0000000000001426 2-s2.0-84982786846 27495745 

  121. 121 Zhao T. Zhang Z. N. Rong Z. Xu Y. Immunogenicity of induced pluripotent stem cells Nature 2011 474 7350 212 215 10.1038/nature10135 2-s2.0-79957807595 21572395 

  122. 122 Lomax G. P. Hull S. C. Lowenthal J. Rao M. Isasi R. The DISCUSS project: induced pluripotent stem cell lines from previously collected research biospecimens and informed consent: points to consider Stem Cells Translational Medicine 2013 2 10 727 730 10.5966/sctm.2013-0099 2-s2.0-84884808181 23990574 

  123. 123 Lowenthal J. Lipnick S. Rao M. Hull S. C. Specimen collection for induced pluripotent stem cell research: harmonizing the approach to informed consent Stem Cells Translational Medicine 2012 1 5 409 421 10.5966/sctm.2012-0029 2-s2.0-84871509371 23197820 

  124. 124 Choi S. H. Kim Y. H. Hebisch M. A three-dimensional human neural cell culture model of Alzheimer’s disease Nature 2014 515 7526 274 278 10.1038/nature13800 2-s2.0-84912064761 25307057 

  125. 125 Kondo T. Asai M. Tsukita K. Modeling Alzheimer’s disease with iPSCs reveals stress phenotypes associated with intracellular A β and differential drug responsiveness Cell Stem Cell 2013 12 4 487 496 10.1016/j.stem.2013.01.009 2-s2.0-84875916922 23434393 

  126. 126 Liu Q. Waltz S. Woodruff G. Effect of potent γ -secretase modulator in human neurons derived from multiple presenilin 1-induced pluripotent stem cell mutant carriers JAMA Neurology 2014 71 12 1481 1489 10.1001/jamaneurol.2014.2482 2-s2.0-84918522964 25285942 

  127. 127 Sproul A. A. Jacob S. Pre D. Characterization and molecular profiling of PSEN1 familial Alzheimer’s disease iPSC-derived neural progenitors PLoS One 2014 9 1, article e84547 10.1371/journal.pone.0084547 2-s2.0-84897136184 24416243 

  128. 128 Tang J. Xu H. Fan X. Embryonic stem cell-derived neural precursor cells improve memory dysfunction in A β (1–40) injured rats Neuroscience Research 2008 62 2 86 96 10.1016/j.neures.2008.06.005 2-s2.0-50449092677 18634835 

  129. 129 Yagi T. Kosakai A. Ito D. Establishment of induced pluripotent stem cells from centenarians for neurodegenerative disease research PLoS One 2012 7 7, article e41572 10.1371/journal.pone.0041572 2-s2.0-84864330048 22848530 

  130. 130 Yagi T. Ito D. Okada Y. Modeling familial Alzheimer’s disease with induced pluripotent stem cells Human Molecular Genetics 2011 20 23 4530 4539 10.1093/hmg/ddr394 2-s2.0-81255169342 21900357 

  131. 131 Israel M. A. Yuan S. H. Bardy C. Probing sporadic and familial Alzheimer’s disease using induced pluripotent stem cells Nature 2012 482 7384 216 220 10.1038/nature10821 2-s2.0-84856956771 22278060 

  132. 132 Pen A. E. Jensen U. B. Current status of treating neurodegenerative disease with induced pluripotent stem cells Acta Neurologica Scandinavica 2017 135 1 57 72 10.1111/ane.12545 2-s2.0-84954121591 26748435 

  133. 133 Hu B. Y. Weick J. P. Yu J. Neural differentiation of human induced pluripotent stem cells follows developmental principles but with variable potency Proceedings of the National Academy of Sciences of the United States of America 2010 107 9 4335 4340 10.1073/pnas.0910012107 2-s2.0-77749279749 20160098 

  134. 134 Wang Z. Peng W. Zhang C. Effects of stem cell transplantation on cognitive decline in animal models of Alzheimer’s disease: a systematic review and meta-analysis Scientific Reports 2015 5 1, article 12134 10.1038/srep12134 2-s2.0-84936998746 

  135. 135 Hermann A. Storch A. Induced neural stem cells (iNSCs) in neurodegenerative diseases Journal of Neural Transmission 2013 120 Supplement 1 S19 S25 10.1007/s00702-013-1042-9 2-s2.0-84892785853 23720190 

  136. 136 Yu D. X. Marchetto M. C. Gage F. H. Therapeutic translation of iPSCs for treating neurological disease Cell Stem Cell 2013 12 6 678 688 10.1016/j.stem.2013.05.018 2-s2.0-84878838707 23746977 

  137. 137 Yuan S. H. Martin J. Elia J. Cell-surface marker signatures for the isolation of neural stem cells, glia and neurons derived from human pluripotent stem cells PLoS One 2011 6 3, article e17540 10.1371/journal.pone.0017540 2-s2.0-79952292990 21407814 

  138. 138 Lee H. J. Kim K. S. Kim E. J. Brain transplantation of immortalized human neural stem cells promotes functional recovery in mouse intracerebral hemorrhage stroke model Stem Cells 2007 25 5 1204 1212 10.1634/stemcells.2006-0409 2-s2.0-34247636618 17218400 

  139. 139 Xuan A. G. Long D. H. Gu H. G. Yang D. D. Hong L. P. Leng S. L. BDNF improves the effects of neural stem cells on the rat model of Alzheimer’s disease with unilateral lesion of fimbria-fornix Neuroscience Letters 2008 440 3 331 335 10.1016/j.neulet.2008.05.107 2-s2.0-45849098696 18579298 

  140. 140 Xuan A. G. Luo M. Ji W. D. Long D. H. Effects of engrafted neural stem cells in Alzheimer’s disease rats Neuroscience Letters 2009 450 2 167 171 10.1016/j.neulet.2008.12.001 2-s2.0-58149330092 19070649 

  141. 141 Yamasaki T. R. Blurton-Jones M. Morrissette D. A. Kitazawa M. Oddo S. LaFerla F. M. Neural stem cells improve memory in an inducible mouse model of neuronal loss The Journal of Neuroscience 2007 27 44 11925 11933 10.1523/JNEUROSCI.1627-07.2007 2-s2.0-35948979698 17978032 

  142. 142 Tong L. M. Fong H. Huang Y. Stem cell therapy for Alzheimer’s disease and related disorders: current status and future perspectives Experimental & Molecular Medicine 2015 47 3, article e151 10.1038/emm.2014.124 2-s2.0-84989323079 25766620 

  143. 143 Chen C. Xiao S. F. Induced pluripotent stem cells and neurodegenerative diseases Neuroscience Bulletin 2011 27 2 107 114 10.1007/s12264-011-1147-9 2-s2.0-79957450463 21441972 

  144. 144 Wu S. Sasaki A. Yoshimoto R. Neural stem cells improve learning and memory in rats with Alzheimer’s disease Pathobiology 2008 75 3 186 194 10.1159/000124979 2-s2.0-48749116491 18550916 

  145. 145 Kim S. U. Lee H. J. Kim Y. B. Neural stem cell-based treatment for neurodegenerative diseases Neuropathology 2013 33 5 491 504 10.1111/neup.12020 2-s2.0-84884981311 23384285 

  146. 146 Moghadam F. H. Alaie H. Karbalaie K. Tanhaei S. Nasr Esfahani M. H. Baharvand H. Transplantation of primed or unprimed mouse embryonic stem cell-derived neural precursor cells improves cognitive function in Alzheimerian rats Differentiation 2009 78 2-3 59 68 10.1016/j.diff.2009.06.005 2-s2.0-69949139798 19616885 

  147. 147 Kordower J. H. Winn S. R. Liu Y. T. The aged monkey basal forebrain: rescue and sprouting of axotomized basal forebrain neurons after grafts of encapsulated cells secreting human nerve growth factor Proceedings of the National Academy of Sciences of the United States of America 1994 91 23 10898 10902 10.1073/pnas.91.23.10898 2-s2.0-0028020905 7971980 

  148. 148 Blurton-Jones M. Kitazawa M. Martinez-Coria H. Neural stem cells improve cognition via BDNF in a transgenic model of Alzheimer disease Proceedings of the National Academy of Sciences of the United States of America 2009 106 32 13594 13599 10.1073/pnas.0901402106 2-s2.0-69449091994 19633196 

  149. 149 Chen W. W. Blurton-Jones M. Concise review: can stem cells be used to treat or model Alzheimer’s disease? Stem Cells 2012 30 12 2612 2618 10.1002/stem.1240 2-s2.0-84870374627 22997040 

  150. 150 Ager R. R. Davis J. L. Agazaryan A. Human neural stem cells improve cognition and promote synaptic growth in two complementary transgenic models of Alzheimer’s disease and neuronal loss Hippocampus 2015 25 7 813 826 10.1002/hipo.22405 2-s2.0-84931576897 25530343 

  151. 151 Lee I. S. Jung K. Kim I. S. Human neural stem cells alleviate Alzheimer-like pathology in a mouse model Molecular Neurodegeneration 2015 10 1 p. 38 10.1186/s13024-015-0035-6 2-s2.0-84939609581 

  152. 152 Lilja A. M. Malmsten L. Röjdner J. Neural stem cell transplant-induced effect on neurogenesis and cognition in Alzheimer Tg2576 mice is inhibited by concomitant treatment with amyloid-lowering or cholinergic α 7 nicotinic receptor drugs Neural Plasticity 2015 2015 13 10.1155/2015/370432 2-s2.0-84938149074 370432 

  153. 153 Zhang Q. Wu H. Wang Y. Gu G. Zhang W. Xia R. Neural stem cell transplantation decreases neuroinflammation in a transgenic mouse model of Alzheimer’s disease Journal of Neurochemistry 2015 136 4 815 825 10.1111/jnc.13413 2-s2.0-84956757390 26525612 

  154. 154 Han D. W. Tapia N. Hermann A. Direct reprogramming of fibroblasts into neural stem cells by defined factors Cell Stem Cell 2012 10 4 465 472 10.1016/j.stem.2012.02.021 2-s2.0-84862777308 22445517 

  155. 155 Kim S. M. Flaßkamp H. Hermann A. Direct conversion of mouse fibroblasts into induced neural stem cells Nature Protocols 2014 9 4 871 881 10.1038/nprot.2014.056 2-s2.0-84897141348 24651499 

  156. 156 Lujan E. Chanda S. Ahlenius H. Sudhof T. C. Wernig M. Direct conversion of mouse fibroblasts to self-renewing, tripotent neural precursor cells Proceedings of the National Academy of Sciences of the United States of America 2012 109 7 2527 2532 10.1073/pnas.1121003109 2-s2.0-84857136772 22308465 

  157. 157 Ring K. L. Tong L. M. Balestra M. E. Direct reprogramming of mouse and human fibroblasts into multipotent neural stem cells with a single factor Cell Stem Cell 2012 11 1 100 109 10.1016/j.stem.2012.05.018 2-s2.0-84863625049 22683203 

  158. 158 Thier M. Wörsdörfer P. Lakes Y. B. Direct conversion of fibroblasts into stably expandable neural stem cells Cell Stem Cell 2012 10 4 473 479 10.1016/j.stem.2012.03.003 2-s2.0-84859555919 22445518 

  159. 159 Zhou Q. Tripathi P. How to remake a fibroblast into a neural stem cell Cell Stem Cell 2012 10 4 347 348 10.1016/j.stem.2012.03.005 2-s2.0-84859535900 22482497 

  160. 160 Corti S. Nizzardo M. Simone C. Direct reprogramming of human astrocytes into neural stem cells and neurons Experimental Cell Research 2012 318 13 1528 1541 10.1016/j.yexcr.2012.02.040 2-s2.0-84862006503 22426197 

  161. 161 Sheng C. Zheng Q. Wu J. Direct reprogramming of Sertoli cells into multipotent neural stem cells by defined factors Cell Research 2012 22 1 208 218 10.1038/cr.2011.175 2-s2.0-84855516409 22064700 

  162. 162 Li M. Guo K. Ikehara S. Stem cell treatment for Alzheimer’s disease International Journal of Molecular Sciences 2014 15 10 19226 19238 10.3390/ijms151019226 2-s2.0-84930619963 25342318 

  163. 163 Hemmer K. Zhang M. van Wüllen T. Induced neural stem cells achieve long-term survival and functional integration in the adult mouse brain Stem Cell Reports 2014 3 3 423 431 10.1016/j.stemcr.2014.06.017 2-s2.0-84914101821 25241741 

  164. 164 Chen S. Q. Cai Q. Shen Y. Y. 1 H-MRS evaluation of therapeutic effect of neural stem cell transplantation on Alzheimer’s disease in A β PP/PS1 double transgenic mice Journal of Alzheimer’s Disease 2012 28 1 71 80 10.3233/JAD-2010-110893 2-s2.0-84862965631 21955813 

  165. 165 Choi S. S. Lee S. R. Kim S. U. Lee H. J. Alzheimer’s disease and stem cell therapy Experimental Neurobiology 2014 23 1 45 52 10.5607/en.2014.23.1.45 24737939 

  166. 166 Dunnett S. B. Rosser A. E. Challenges for taking primary and stem cells into clinical neurotransplantation trials for neurodegenerative disease Neurobiology of Disease 2014 61 79 89 10.1016/j.nbd.2013.05.004 2-s2.0-84888028206 23688854 

  167. 167 Divya M. S. Roshin G. E. Divya T. S. Umbilical cord blood-derived mesenchymal stem cells consist of a unique population of progenitors co-expressing mesenchymal stem cell and neuronal markers capable of instantaneous neuronal differentiation Stem Cell Research & Therapy 2012 3 6 p. 57 10.1186/scrt148 2-s2.0-84877777577 23253356 

  168. 168 Oh S. H. Kim H. N. Park H. J. Shin J. Y. Lee P. H. Mesenchymal stem cells increase hippocampal neurogenesis and neuronal differentiation by enhancing the Wnt signaling pathway in an Alzheimer’s disease model Cell Transplantation 2015 24 6 1097 1109 10.3727/096368914X679237 2-s2.0-84991223151 24612635 

  169. 169 Ra J. C. Shin I. S. Kim S. H. Safety of intravenous infusion of human adipose tissue-derived mesenchymal stem cells in animals and humans Stem Cells and Development 2011 20 8 1297 1308 10.1089/scd.2010.0466 2-s2.0-79958825416 21303266 

  170. 170 Lee J. Kuroda S. Shichinohe H. Migration and differentiation of nuclear fluorescence-labeled bone marrow stromal cells after transplantation into cerebral infarct and spinal cord injury in mice Neuropathology 2003 23 3 169 180 10.1046/j.1440-1789.2003.00496.x 2-s2.0-0141757405 14570283 

  171. 171 Kim S. U. Oh H. J. Wanless I. R. Lee S. Han K. H. Park Y. N. The Laennec staging system for histological sub-classification of cirrhosis is useful for stratification of prognosis in patients with liver cirrhosis Journal of Hepatology 2012 57 3 556 563 10.1016/j.jhep.2012.04.029 2-s2.0-84865124384 22617153 

  172. 172 Munoz J. R. Stoutenger B. R. Robinson A. P. Spees J. L. Prockop D. J. Human stem/progenitor cells from bone marrow promote neurogenesis of endogenous neural stem cells in the hippocampus of mice Proceedings of the National Academy of Sciences of the United States of America 2005 102 50 18171 18176 10.1073/pnas.0508945102 2-s2.0-29144460856 16330757 

  173. 173 Teixeira F. G. Carvalho M. M. Neves-Carvalho A. Secretome of mesenchymal progenitors from the umbilical cord acts as modulator of neural/glial proliferation and differentiation Stem Cell Reviews and Reports 2015 11 2 288 297 10.1007/s12015-014-9576-2 2-s2.0-84928675667 25420577 

  174. 174 Zilka N. Zilkova M. Kazmerova Z. Sarissky M. Cigankova V. Novak M. Mesenchymal stem cells rescue the Alzheimer’s disease cell model from cell death induced by misfolded truncated tau Neuroscience 2011 193 330 337 10.1016/j.neuroscience.2011.06.088 2-s2.0-80052496433 21763758 

  175. 175 Kim K. S. Kim H. S. Park J. M. Long-term immunomodulatory effect of amniotic stem cells in an Alzheimer’s disease model Neurobiology of Aging 2013 34 10 2408 2420 10.1016/j.neurobiolaging.2013.03.029 2-s2.0-84879885935 23623603 

  176. 176 Naaldijk Y. Jäger C. Fabian C. Effect of systemic transplantation of bone marrow-derived mesenchymal stem cells on neuropathology markers in APP/PS1 Alzheimer mice Neuropathology and Applied Neurobiology 2017 43 4 299 314 10.1111/nan.12319 2-s2.0-84964403888 26918424 

  177. 177 Yang H. Xie Z. Wei L. Human umbilical cord mesenchymal stem cell-derived neuron-like cells rescue memory deficits and reduce amyloid-beta deposition in an AbetaPP/PS1 transgenic mouse model Stem Cell Research & Therapy 2013 4 4 p. 76 10.1186/scrt227 2-s2.0-84879831744 23826983 

  178. 178 Yun H. M. Kim H. S. Park K. R. Placenta-derived mesenchymal stem cells improve memory dysfunction in an A β 1–42 -infused mouse model of Alzheimer’s disease Cell Death & Disease 2013 4 12, article e958 10.1038/cddis.2013.490 2-s2.0-84891752308 24336078 

  179. 179 Zaher W. Harkness L. Jafari A. Kassem M. An update of human mesenchymal stem cell biology and their clinical uses Archives of Toxicology 2014 88 5 1069 1082 10.1007/s00204-014-1232-8 2-s2.0-84901328262 24691703 

  180. 180 Aggarwal S. Pittenger M. F. Human mesenchymal stem cells modulate allogeneic immune cell responses Blood 2005 105 4 1815 1822 10.1182/blood-2004-04-1559 2-s2.0-13544249606 15494428 

  181. 181 Beyth S. Borovsky Z. Mevorach D. Human mesenchymal stem cells alter antigen-presenting cell maturation and induce T-cell unresponsiveness Blood 2005 105 5 2214 2219 10.1182/blood-2004-07-2921 2-s2.0-14944339174 15514012 

  182. 182 Ramasamy R. Fazekasova H. Lam E. W.-F. Soeiro I. Lombardi G. Dazzi F. Mesenchymal stem cells inhibit dendritic cell differentiation and function by preventing entry into the cell cycle Transplantation 2007 83 1 71 76 10.1097/01.tp.0000244572.24780.54 2-s2.0-33846220680 17220794 

  183. 183 Ryan J. M. Barry F. Murphy J. M. Mahon B. P. Interferon- γ does not break, but promotes the immunosuppressive capacity of adult human mesenchymal stem cells Clinical & Experimental Immunology 2007 149 2 353 363 10.1111/j.1365-2249.2007.03422.x 2-s2.0-34447298069 17521318 

  184. 184 Sotiropoulou P. A. Perez S. A. Gritzapis A. D. Baxevanis C. N. Papamichail M. Interactions between human mesenchymal stem cells and natural killer cells Stem Cells 2006 24 1 74 85 10.1634/stemcells.2004-0359 2-s2.0-33645508766 16099998 

  185. 185 Chen J. Tang Y. X. Liu Y. M. Transplantation of adipose-derived stem cells is associated with neural differentiation and functional improvement in a rat model of intracerebral hemorrhage CNS Neuroscience & Therapeutics 2012 18 10 847 854 10.1111/j.1755-5949.2012.00382.x 2-s2.0-84866751239 22934896 

  186. 186 Case J. Horvath T. L. Ballas C. B. March K. L. Srour E. F. In vitro clonal analysis of murine pluripotent stem cells isolated from skeletal muscle and adipose stromal cells Experimental Hematology 2008 36 2 224 234 10.1016/j.exphem.2007.09.003 2-s2.0-38149051609 18023524 

  187. 187 Peroni D. Scambi I. Pasini A. Stem molecular signature of adipose-derived stromal cells Experimental Cell Research 2008 314 3 603 615 10.1016/j.yexcr.2007.10.007 2-s2.0-38149111801 18022619 

  188. 188 Gutiérrez-Fernández M. Rodríguez-Frutos B. Ramos-Cejudo J. Effects of intravenous administration of allogenic bone marrow- and adipose tissue-derived mesenchymal stem cells on functional recovery and brain repair markers in experimental ischemic stroke Stem Cell Research & Therapy 2013 4 1 p. 11 10.1186/scrt159 2-s2.0-84873353375 23356495 

  189. 189 Ikegame Y. Yamashita K. Hayashi S. Comparison of mesenchymal stem cells from adipose tissue and bone marrow for ischemic stroke therapy Cytotherapy 2011 13 6 675 685 10.3109/14653249.2010.549122 2-s2.0-79959271012 21231804 

  190. 190 Leu S. Lin Y. C. Yuen C. M. Adipose-derived mesenchymal stem cells markedly attenuate brain infarct size and improve neurological function in rats Journal of Translational Medicine 2010 8 1 p. 63 10.1186/1479-5876-8-63 2-s2.0-77953940699 20584315 

  191. 191 Lu S. Lu C. Han Q. Adipose-derived mesenchymal stem cells protect PC12 cells from glutamate excitotoxicity-induced apoptosis by upregulation of XIAP through PI3-K/Akt activation Toxicology 2011 279 1–3 189 195 10.1016/j.tox.2010.10.011 2-s2.0-78650019181 21040751 

  192. 192 Wei X. Zhao L. Zhong J. Adipose stromal cells-secreted neuroprotective media against neuronal apoptosis Neuroscience Letters 2009 462 1 76 79 10.1016/j.neulet.2009.06.054 2-s2.0-67650447381 19549558 

  193. 193 Yang K. L. Lee J. T. Pang C. Y. Human adipose-derived stem cells for the treatment of intracerebral hemorrhage in rats via femoral intravenous injection Cellular and Molecular Biology Letters 2012 17 3 376 392 10.2478/s11658-012-0016-5 2-s2.0-84863586070 22544763 

  194. 194 Kang J. M. Yeon B. K. Cho S. J. Suh Y. H. Stem cell therapy for Alzheimer’s disease: a review of recent clinical trials Journal of Alzheimer’s Disease 2016 54 3 879 889 10.3233/JAD-160406 2-s2.0-84990060813 27567851 

  195. 195 Darlington D. Deng J. Giunta B. Multiple low-dose infusions of human umbilical cord blood cells improve cognitive impairments and reduce amyloid-beta-associated neuropathology in Alzheimer mice Stem Cells and Development 2013 22 3 412 421 10.1089/scd.2012.0345 2-s2.0-84872733759 22816379 

  196. 196 Fernandes K. J. L. Kobayashi N. R. Gallagher C. J. Analysis of the neurogenic potential of multipotent skin-derived precursors Experimental Neurology 2006 201 1 32 48 10.1016/j.expneurol.2006.03.018 2-s2.0-33747161350 16678161 

  197. 197 Fernandes K. J. L. McKenzie I. A. Mill P. A dermal niche for multipotent adult skin-derived precursor cells Nature Cell Biology 2004 6 11 1082 1093 10.1038/ncb1181 2-s2.0-7944237574 15517002 

  198. 198 Hu Y. F. Gourab K. Wells C. Clewes O. Schmit B. D. Sieber-Blum M. Epidermal neural crest stem cell (EPI-NCSC)—mediated recovery of sensory function in a mouse model of spinal cord injury Stem Cell Reviews and Reports 2010 6 2 186 198 10.1007/s12015-010-9152-3 2-s2.0-77953914847 20414748 

  199. 199 Krejci E. Grim M. Isolation and characterization of neural crest stem cells from adult human hair follicles Folia Biologica 2010 56 4 149 157 20974047 

  200. 200 Sieber-Blum M. Grim M. Hu Y. F. Szeder V. Pluripotent neural crest stem cells in the adult hair follicle Developmental Dynamics 2004 231 2 258 269 10.1002/dvdy.20129 2-s2.0-3843085863 15366003 

  201. 201 Nikolic W. V. Hou H. Town T. Peripherally administered human umbilical cord blood cells reduce parenchymal and vascular β -amyloid deposits in Alzheimer mice Stem Cells and Development 2008 17 3 423 440 10.1089/scd.2008.0018 2-s2.0-46749104502 18366296 

  202. 202 Arthur A. Rychkov G. Shi S. Koblar S. A. Gronthos S. Adult human dental pulp stem cells differentiate toward functionally active neurons under appropriate environmental cues Stem Cells 2008 26 7 1787 1795 10.1634/stemcells.2007-0979 2-s2.0-55049116045 18499892 

  203. 203 Arthur A. Shi S. Zannettino A. C. W. Fujii N. Gronthos S. Koblar S. A. Implanted adult human dental pulp stem cells induce endogenous axon guidance Stem Cells 2009 27 9 2229 2237 10.1002/stem.138 2-s2.0-70349871254 19544412 

  204. 204 Leong W. K. Henshall T. L. Arthur A. Human adult dental pulp stem cells enhance poststroke functional recovery through non-neural replacement mechanisms Stem Cells Translational Medicine 2012 1 3 177 187 10.5966/sctm.2011-0039 2-s2.0-84872101947 23197777 

  205. 205 Deumens R. Koopmans G. C. Honig W. M. M. Chronically injured corticospinal axons do not cross large spinal lesion gaps after a multifactorial transplantation strategy using olfactory ensheathing cell/olfactory nerve fibroblast-biomatrix bridges Journal of Neuroscience Research 2006 83 5 811 820 10.1002/jnr.20768 2-s2.0-33645325131 16477623 

  206. 206 Imaizumi T. Lankford K. L. Waxman S. G. Greer C. A. Kocsis J. D. Transplanted olfactory ensheathing cells remyelinate and enhance axonal conduction in the demyelinated dorsal columns of the rat spinal cord The Journal of Neuroscience 1998 18 16 6176 6185 9698311 

  207. 207 Li Y. Field P. M. Raisman G. Regeneration of adult rat corticospinal axons induced by transplanted olfactory ensheathing cells The Journal of Neuroscience 1998 18 24 10514 10524 9852589 

  208. 208 Munoz-Quiles C. Santos-Benito F. F. Llamusi M. B. Ramon-Cueto A. Chronic spinal injury repair by olfactory bulb ensheathing glia and feasibility for autologous therapy Journal of Neuropathology & Experimental Neurology 2009 68 12 1294 1308 10.1097/NEN.0b013e3181c34bbe 2-s2.0-73349119100 19915486 

  209. 209 Ramon-Cueto A. Avila J. Olfactory ensheathing glia: properties and function Brain Research Bulletin 1998 46 3 175 187 10.1016/S0361-9230(97)00463-2 2-s2.0-0344653600 9667810 

  210. 210 Ramon-Cueto A. Cordero M. I. Santos-Benito F. F. Avila J. Functional recovery of paraplegic rats and motor axon regeneration in their spinal cords by olfactory ensheathing glia Neuron 2000 25 2 425 435 10.1016/S0896-6273(00)80905-8 2-s2.0-0033757632 10719896 

  211. 211 Baig A. M. Designer’s microglia with novel delivery system in neurodegenerative diseases Medical Hypotheses 2014 83 4 510 512 10.1016/j.mehy.2014.08.003 2-s2.0-84929939864 25146247 

  212. 212 Baig A. M. Khan N. A. Novel chemotherapeutic strategies in the management of primary amoebic meningoencephalitis due to Naegleria fowleri CNS Neuroscience & Therapeutics 2014 20 3 289 290 10.1111/cns.12225 2-s2.0-84894228911 24456292 

  213. 213 Danielyan L. Beer-Hammer S. Stolzing A. Intranasal delivery of bone marrow-derived mesenchymal stem cells, macrophages, and microglia to the brain in mouse models of Alzheimer’s and Parkinson’s disease Cell Transplantation 2014 23 Supplement 1 S123 S139 25302802 

  214. 214 Tachibana M. Amato P. Sparman M. Human embryonic stem cells derived by somatic cell nuclear transfer Cell 2013 153 6 1228 1238 10.1016/j.cell.2013.05.006 2-s2.0-84878838747 23683578 

  215. 215 Vertelov G. Kharazi L. Muralidhar M. G. Sanati G. Tankovich T. Kharazi A. High targeted migration of human mesenchymal stem cells grown in hypoxia is associated with enhanced activation of RhoA Stem Cell Research & Therapy 2013 4 1 p. 5 10.1186/scrt153 2-s2.0-84878648232 23295150 

  216. 216 Andressen C. Neural stem cells: from neurobiology to clinical applications Current Pharmaceutical Biotechnology 2013 14 1 20 28 10.2174/138920113804805412 2-s2.0-84872586684 23092257 

  217. 217 Borlongan C. V. Recent preclinical evidence advancing cell therapy for Alzheimer’s disease Experimental Neurology 2012 237 1 142 146 10.1016/j.expneurol.2012.06.024 2-s2.0-84863844380 22766481 

  218. 218 Fan X. Sun D. Tang X. Cai Y. Yin Z. Q. Xu H. Stem-cell challenges in the treatment of Alzheimer’s disease: a long way from bench to bedside Medicinal Research Reviews 2014 34 5 957 978 10.1002/med.21309 2-s2.0-84905440300 24500883 

  219. 219 Glat M. J. Offen D. Cell and gene therapy in Alzheimer’s disease Stem Cells and Development 2013 22 10 1490 1496 10.1089/scd.2012.0633 2-s2.0-84877316680 23320452 

  220. 220 Hitoshi S. Tropepe V. Ekker M. van der Kooy D. Neural stem cell lineages are regionally specified, but not committed, within distinct compartments of the developing brain Development 2002 129 1 233 244 11782416 

  221. 221 Okano H. Temple S. Cell types to order: temporal specification of CNS stem cells Current Opinion in Neurobiology 2009 19 2 112 119 10.1016/j.conb.2009.04.003 2-s2.0-67650741664 19427192 

  222. 222 Bock C. Kiskinis E. Verstappen G. Reference maps of human ES and iPS cell variation enable high-throughput characterization of pluripotent cell lines Cell 2011 144 3 439 452 10.1016/j.cell.2010.12.032 2-s2.0-79551677421 21295703 

  223. 223 Boulting G. L. Kiskinis E. Croft G. F. A functionally characterized test set of human induced pluripotent stem cells Nature Biotechnology 2011 29 3 279 286 10.1038/nbt.1783 2-s2.0-79551665440 21293464 

  224. 224 Amariglio N. Hirshberg A. Scheithauer B. W. Donor-derived brain tumor following neural stem cell transplantation in an ataxia telangiectasia patient PLoS Medicine 2009 6 2, article e1000029 10.1371/journal.pmed.1000029 2-s2.0-61449171881 19226183 

  225. 225 Fazel S. S. Angoulvant D. Butany J. Weisel R. D. Li R. K. Mesenchymal stem cells engineered to overexpress stem cell factor improve cardiac function but have malignant potential The Journal of Thoracic and Cardiovascular Surgery 2008 136 5 1388 1389 10.1016/j.jtcvs.2007.11.068 2-s2.0-56549096547 19026843 

  226. 226 Hunsberger J. G. Rao M. Kurtzberg J. Accelerating stem cell trials for Alzheimer’s disease The Lancet Neurology 2016 15 2 219 230 10.1016/S1474-4422(15)00332-4 2-s2.0-84955407708 26704439 

  227. 227 Thirabanjasak D. Tantiwongse K. Thorner P. S. Angiomyeloproliferative lesions following autologous stem cell therapy Journal of the American Society of Nephrology 2010 21 7 1218 1222 10.1681/ASN.2009111156 2-s2.0-77954574888 20558536 

  228. 228 Pappas D. J. Gourraud P. A. Le Gall C. Proceedings: human leukocyte antigen haplo-homozygous induced pluripotent stem cell haplobank modeled after the California population: evaluating matching in a multiethnic and admixed population Stem Cells Translational Medicine 2015 4 5 413 418 10.5966/sctm.2015-0052 2-s2.0-84930431464 25926330 

  229. 229 Cromer Berman S. M. Walczak P. Bulte J. W. M. Tracking stem cells using magnetic nanoparticles Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology 2011 3 4 343 355 10.1002/wnan.140 2-s2.0-79958244804 21472999 

  230. 230 Karussis D. Karageorgiou C. Vaknin-Dembinsky A. Safety and immunological effects of mesenchymal stem cell transplantation in patients with multiple sclerosis and amyotrophic lateral sclerosis Archives of Neurology 2010 67 10 1187 1194 10.1001/archneurol.2010.248 2-s2.0-77957964299 20937945 

  231. 231 Srivastava A. K. Kadayakkara D. K. Bar-Shir A. Gilad A. A. McMahon M. T. Bulte J. W. M. Advances in using MRI probes and sensors for in vivo cell tracking as applied to regenerative medicine Disease Models & Mechanisms 2015 8 4 323 336 10.1242/dmm.018499 2-s2.0-84927509467 26035841 

  232. 232 Gorelik M. Orukari I. Wang J. Use of MR cell tracking to evaluate targeting of glial precursor cells to inflammatory tissue by exploiting the very late antigen-4 docking receptor Radiology 2012 265 1 175 185 10.1148/radiol.12112212 2-s2.0-84866611382 22923719 

  233. 233 Janowski M. Lyczek A. Engels C. Cell size and velocity of injection are major determinants of the safety of intracarotid stem cell transplantation Journal of Cerebral Blood Flow & Metabolism 2013 33 6 921 927 10.1038/jcbfm.2013.32 2-s2.0-84878568928 23486296 

LOADING...
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로