최소 단어 이상 선택하여야 합니다.
최대 10 단어까지만 선택 가능합니다.
다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
NTIS 바로가기IEEE transactions on medical imaging, v.37 no.6, 2018년, pp.1488 - 1497
Quan, Tran Minh (Ulsan National Institute of Science and Technology, Ulsan, South Korea) , Nguyen-Duc, Thanh (Ulsan National Institute of Science and Technology, Ulsan, South Korea) , Jeong, Won-Ki (Ulsan National Institute of Science and Technology, Ulsan, South Korea)
Compressed sensing magnetic resonance imaging (CS-MRI) has provided theoretical foundations upon which the time-consuming MRI acquisition process can be accelerated. However, it primarily relies on iterative numerical solvers, which still hinders their adaptation in time-critical applications. In ad...
Deep de-aliasing for fast compressive sensing MRI yu 2017
Deep generative adversarial networks for compressed sensing automates MRI mardani 2017
Learning to discover cross-domain relations with generative adversarial networks kim 2017
Proc NIPS Generative adversarial nets goodfellow 2014 2672
Proc MICCAI Conf Dictionary learning and time sparsity in dynamic MRI caballero 2012 256
Adam A method for stochastic optimization kingma 2014
Wasserstein GAN arjovsky 2017
Jung, Hong, Ye, Jong Chul, Kim, Eung Yeop. Improved k–t BLAST and k–t SENSE using FOCUSS. Physics in medicine & biology, vol.52, no.11, 3201-3226.
Jung, Hong, Sung, Kyunghyun, Nayak, Krishna S., Kim, Eung Yeop, Ye, Jong Chul. k-t FOCUSS: A general compressed sensing framework for high resolution dynamic MRI. Magnetic resonance in medicine : official journal of the Society of Magnetic Resonance in Medicine, vol.61, no.1, 103-116.
Proc MICCAI Conf Multi-GPU reconstruction of dynamic compressed sensing MRI quan 2015 484
Proc MICCAI Conf Accelerated dynamic MRI reconstruction with total variation and nuclear norm regularization yao 2015 635
Otazo, Ricardo, Candès, Emmanuel, Sodickson, Daniel K.. Low‐rank plus sparse matrix decomposition for accelerated dynamic MRI with separation of background and dynamic components. Magnetic resonance in medicine : official journal of the Society of Magnetic Resonance in Medicine, vol.73, no.3, 1125-1136.
Tremoulheac, Benjamin, Dikaios, Nikolaos, Atkinson, David, Arridge, Simon R..
Dynamic MR Image Reconstruction–Separation From Undersampled (
Aharon, M., Elad, M., Bruckstein, A.. K-SVD: an algorithm for designing overcomplete dictionaries for sparse representation. IEEE transactions on signal processing : a publication of the IEEE Signal Processing Society, vol.54, no.11, 4311-4322.
Caballero, Jose, Price, Anthony N., Rueckert, Daniel, Hajnal, Joseph V.. Dictionary Learning and Time Sparsity for Dynamic MR Data Reconstruction. IEEE transactions on medical imaging, vol.33, no.4, 979-994.
Ravishankar, Saiprasad, Bresler, Yoram. MR Image Reconstruction From Highly Undersampled k-Space Data by Dictionary Learning. IEEE transactions on medical imaging, vol.30, no.5, 1028-1041.
Deep artifact learning for compressed sensing and parallel MRI lee 2017
Liang, Dong, Liu, Bo, Wang, JiunJie, Ying, Leslie. Accelerating SENSE using compressed sensing. Magnetic resonance in medicine : official journal of the Society of Magnetic Resonance in Medicine, vol.62, no.6, 1574-1584.
Schlemper, Jo, Caballero, Jose, Hajnal, Joseph V., Price, Anthony N., Rueckert, Daniel. A Deep Cascade of Convolutional Neural Networks for Dynamic MR Image Reconstruction. IEEE transactions on medical imaging, vol.37, no.2, 491-503.
Lustig, M., Donoho, D.L., Santos, J.M., Pauly, J.M.. Compressed Sensing MRI [A look at how CS can improve on current imaging techniques]. IEEE signal processing magazine, vol.25, no.2, 72-82.
Goldstein, Tom, Osher, Stanley. The Split Bregman Method for L1-Regularized Problems. SIAM journal on imaging sciences, vol.2, no.2, 323-343.
Jin, Kyong Hwan, McCann, Michael T., Froustey, Emmanuel, Unser, Michael. Deep Convolutional Neural Network for Inverse Problems in Imaging. IEEE transactions on image processing : a publication of the IEEE Signal Processing Society, vol.26, no.9, 4509-4522.
Nature Deep learning lecun 2015 10.1038/nature14539 521 436
Boyd, Stephen. Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers. Foundations and trends in machine learning, vol.3, no.1, 1-122.
Donoho, D.L.. Compressed sensing. IEEE transactions on information theory, vol.52, no.4, 1289-1306.
Heidemann, Robin M., �zsarlak, �zkan, Parizel, Paul M., Michiels, Johan, Kiefer, Berthold, Jellus, Vladimir, M�ller, Mathias, Breuer, Felix, Blaimer, Martin, Griswold, Mark A., Jakob, Peter M.. A brief review of parallel magnetic resonance imaging. European radiology, vol.13, no.10, 2323-2337.
Proc MICCAI Conf Compressed sensing dynamic MRI reconstruction using GPU-accelerated 3D convolutional sparse coding quan 2016 484
Proc NIPS Deep ADMM-net for compressive sensing MRI sun 2016 10
해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.
*원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다.
저자가 공개 리포지터리에 출판본, post-print, 또는 pre-print를 셀프 아카이빙 하여 자유로운 이용이 가능한 논문
※ AI-Helper는 부적절한 답변을 할 수 있습니다.