$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Design and evaluation of a deformable wing configuration for economical hovering flight of an insect-like tailless flying robot

Bioinspiration & biomimetics, v.13 no.3, 2018년, pp.036009 -   

Phan, Hoang Vu ,  Park, Hoon Cheol

초록이 없습니다.

참고문헌 (88)

  1. 10.2514/6.2012-588 

  2. Ma, Kevin Y., Chirarattananon, Pakpong, Fuller, Sawyer B., Wood, Robert J.. Controlled Flight of a Biologically Inspired, Insect-Scale Robot. Science, vol.340, no.6132, 603-607.

  3. Galiński, Cezary, Żbikowski, Rafał. Insect-like flapping wing mechanism based on a double spherical Scotch yoke. Journal of the Royal Society, Interface, vol.2, no.3, 223-235.

  4. Phan, Hoang Vu, Nguyen, Quoc Viet, Truong, Quang Tri, Truong, Tien Van, Park, Hoon Cheol, Goo, Nam Seo, Byun, Doyoung, Kim, Min Jun. Stable vertical takeoff of an insect-mimicking flapping-wing system without guide implementing inherent pitching stability. Journal of bionic engineering, vol.9, no.4, 391-401.

  5. Hines, Lindsey, Campolo, Domenico, Sitti, Metin. Liftoff of a Motor-Driven, Flapping-Wing Microaerial Vehicle Capable of Resonance. IEEE transactions on robotics : a publication of the IEEE Robotics and Automation Society, vol.30, no.1, 220-232.

  6. Arabagi, Veaceslav, Hines, Lindsey, Sitti, Metin. Design and manufacturing of a controllable miniature flapping wing robotic platform. The International journal of robotics research, vol.31, no.6, 785-800.

  7. 2015 71st Annual Forum of the American Helicopter Society Coleman D 

  8. 2017 12 1748-3190 Bioinspir. Biomim. Phan H V 

  9. Maxworthy, T.. Experiments on the Weis-Fogh mechanism of lift generation by insects in hovering flight. Part 1. Dynamics of the ‘fling’. Journal of fluid mechanics, vol.93, no.1, 47-63.

  10. Ellington, Charles P., van den Berg, Coen, Willmott, Alexander P., Thomas, Adrian L. R.. Leading-edge vortices in insect flight. Nature, vol.384, no.6610, 626-630.

  11. 1999 10.1242/jeb.202.23.3439 202 3439 J. Exp. Biol. Ellington C P 

  12. Sane, Sanjay P.. The aerodynamics of insect flight. The Journal of experimental biology, vol.206, no.23, 4191-4208.

  13. 1994 10.1242/jeb.192.1.179 192 179 J. Exp. Biol. Dickinson M H 

  14. Dickinson, Michael H., Lehmann, Fritz-Olaf, Sane, Sanjay P.. Wing Rotation and the Aerodynamic Basis of Insect Flight. Science, vol.284, no.5422, 1954-1960.

  15. Birch, James M., Dickinson, Michael H.. The influence of wing-wake interactions on the production of aerodynamic forces in flapping flight. The Journal of experimental biology, vol.206, no.13, 2257-2272.

  16. The aerodynamics of hovering insect flight. IV. Aerodynamic mechanisms. Philosophical transactions of the Royal Society of London. Series B, Biological sciences, vol.305, no.1122, 79-113.

  17. 2002 10.1242/jeb.205.8.1087 205 1087 J. Exp. Biol. Sane S P 

  18. 1973 10.1242/jeb.59.1.169 59 169 0022-0949 J. Exp. Biol. Weis-Fogh T 

  19. Miller, Laura A., Peskin, Charles S.. Flexible clap and fling in tiny insect flight. The Journal of experimental biology, vol.212, no.19, 3076-3090.

  20. 2002 The Biomechanics of Insect Flight: Form, Function, Evolution Dudley R 

  21. TAYLOR, GRAHAM K.. Mechanics and aerodynamics of insect flight control. Biological reviews, vol.76, no.4, 449-471.

  22. 1998 10.1242/jeb.201.3.385 201 385 J. Exp. Biol. Lehmann F-O 

  23. ZANKER, J. M.. On the mechanism of speed and altitude control in Drosophila melanogaster. Physiological entomology, vol.13, no.3, 351-361.

  24. 1967 10.1242/jeb.46.2.383 46 383 0022-0949 J. Exp. Biol. Vogel S 

  25. Götz, Karl Georg. Flight control in Drosophila by visual perception of motion. Kybernetik, vol.4, no.6, 199-208.

  26. Nachtigall, Werner, Roth, Werner. Correlations between stationary measurable parameters of wing movement and aerodynamic force production in the blowfly (Calliphora vicina R.-D.). Journal of comparative physiology, vol.150, no.2, 251-260.

  27. 1971 10.1242/jeb.54.3.575 54 575 0022-0949 J. Exp. Biol. Burton A J 

  28. Kammer, A.E.. The motor output during turning flight in a hawkmoth, Manduca sexta. Journal of insect physiology, vol.17, no.6, 1073-1086.

  29. Govind, C. K.. Differential activity in the coxo-subalar muscle during directional flight in the milkweed bug, Oncopeltus. Canadian journal of zoology, vol.50, no.6, 901-905.

  30. 1964 10.1242/jeb.41.1.183 41 183 0022-0949 J. Exp. Biol. Gettrup E 

  31. 1993 10.1242/jeb.182.1.57 182 57 J. Exp. Biol. Wortmann M 

  32. Taylor, Graham K., Thomas, Adrian L. R.. Dynamic flight stability in the desert locustSchistocerca gregaria. The Journal of experimental biology, vol.206, no.16, 2803-2829.

  33. Sun, Mao, Xiong, Yan. Dynamic flight stability of a hovering bumblebee. The Journal of experimental biology, vol.208, no.3, 447-459.

  34. Faruque, I., Sean Humbert, J.. Dipteran insect flight dynamics. Part 1 Longitudinal motion about hover. Journal of theoretical biology, vol.264, no.2, 538-552.

  35. Bo Cheng, Xinyan Deng. Translational and Rotational Damping of Flapping Flight and Its Dynamics and Stability at Hovering. IEEE transactions on robotics : a publication of the IEEE Robotics and Automation Society, vol.27, no.5, 849-864.

  36. Orlowski, C.T., Girard, A.R.. Dynamics, stability, and control analyses of flapping wing micro-air vehicles. Progress in aerospace sciences, vol.51, 18-30.

  37. Liang, Bin, Sun, Mao. Nonlinear flight dynamics and stability of hovering model insects. Journal of the Royal Society, Interface, vol.10, no.85, 20130269-20130269.

  38. The gyroscopic mechanism of the halteres of Diptera. Philosophical transactions of the Royal Society of London. Series B, Biological sciences, vol.233, no.602, 347-384.

  39. Leeuwen, J. L. van, Dickinson, Michael H.. Haltere-mediated equilibrium reflexes of the fruit fly, Drosophila melanogaster. Philosophical transactions. Biological sciences, vol.354, no.1385, 903-916.

  40. Ristroph, Leif, Ristroph, Gunnar, Morozova, Svetlana, Bergou, Attila J., Chang, Song, Guckenheimer, John, Wang, Z. Jane, Cohen, Itai. Active and passive stabilization of body pitch in insect flight. Journal of the Royal Society, Interface, vol.10, no.85, 20130237-.

  41. Sane, Sanjay P., Dieudonné, Alexandre, Willis,, Mark A., Daniel, Thomas L.. Antennal Mechanosensors Mediate Flight Control in Moths. Science, vol.315, no.5813, 863-866.

  42. Hinterwirth, Armin J., Daniel, Thomas L.. Antennae in the hawkmoth Manduca sexta (Lepidoptera, Sphingidae) mediate abdominal flexion in response to mechanical stimuli. Journal of comparative physiology. A, Neuroethology, sensory, neural, and behavioral physiology, vol.196, no.12, 947-956.

  43. 1981 10.1242/jeb.93.1.1 93 1 0022-0949 J. Exp. Biol. Taylor C P 

  44. Conn, A T, Burgess, S C, Ling, C S. Design of a parallel crank-rocker flapping mechanism for insect-inspired micro air vehicles. Proceedings of the Institution of Mechanical Engineers. Part C : Journal of mechanical engineering science, vol.221, no.10, 1211-1222.

  45. Karásek, Matej, Hua, Alexandre, Nan, Yanghai, Lalami, Mohamed, Preumont, André. Pitch and Roll Control Mechanism for a Hovering Flapping Wing MAV. International journal of micro air vehicles, vol.6, no.4, 253-264.

  46. 10.1109/ICRA.2015.7140016 

  47. 10.1109/ICRA.2016.7487666 

  48. Zhang, Jian, Cheng, Bo, Deng, Xinyan. Instantaneous wing kinematics tracking and force control of a high-frequency flapping wing insect MAV. Journal of micro-bio robotics, vol.11, no.1, 67-84.

  49. 2017 12 1748-3190 Bioinspir. Biomim. Phan H V 

  50. 1988 10.1242/jeb.140.1.137 140 137 0022-0949 J. Exp. Biol. Ennos A R 

  51. Young, John, Walker, Simon M., Bomphrey, Richard J., Taylor, Graham K., Thomas, Adrian L. R.. Details of Insect Wing Design and Deformation Enhance Aerodynamic Function and Flight Efficiency. Science, vol.325, no.5947, 1549-1552.

  52. Walker, Simon M., Thomas, Adrian L. R., Taylor, Graham K.. Deformable wing kinematics in the desert locust: how and why do camber, twist and topography vary through the stroke?. Journal of the Royal Society, Interface, vol.6, no.38, 735-747.

  53. Walker, Simon M., Thomas, Adrian L. R., Taylor, Graham K.. Deformable wing kinematics in free-flying hoverflies. Journal of the Royal Society, Interface, vol.7, no.42, 131-142.

  54. Le, Tuyen Quang, Truong, Tien Van, Park, Soo Hyung, Quang Truong, Tri, Ko, Jin Hwan, Park, Hoon Cheol, Byun, Doyoung. Improvement of the aerodynamic performance by wing flexibility and elytra–hind wing interaction of a beetle during forward flight. Journal of the Royal Society, Interface, vol.10, no.85, 20130312-20130312.

  55. Zheng, Lingxiao, Hedrick, Tyson L., Mittal, Rajat. Time-Varying Wing-Twist Improves Aerodynamic Efficiency of Forward Flight in Butterflies. PloS one, vol.8, no.1, e53060-.

  56. Phan, Hoang Vu, Au, Thi Kim Loan, Park, Hoon Cheol. Clap-and-fling mechanism in a hovering insect-like two-winged flapping-wing micro air vehicle. Royal Society Open Science, vol.3, no.12, 160746-.

  57. Du, Gang, Sun, Mao. Effects of wing deformation on aerodynamic forces in hovering hoverflies. The Journal of experimental biology, vol.213, no.13, 2273-2283.

  58. 2011 10.1088/1748-3182/6/3/036008 6 1748-3190 Bioinspir. Biomim. Truong Q T 

  59. Phan, Hoang Vu, Truong, Quang Tri, Au, Thi Kim Loan, Park, Hoon Cheol. Effect of Wing Kinematics Modulation on Aerodynamic Force Generation in Hovering Insect-mimicking Flapping-wing Micro Air Vehicle. Journal of bionic engineering, vol.12, no.4, 539-554.

  60. Truong, Tri Quang, Phan, Vu Hoang, Park, Hoon Cheol, Ko, Jin Hwan. Effect of Wing Twisting on Aerodynamic Performance of Flapping Wing System. AIAA journal, vol.51, no.7, 1612-1620.

  61. Nguyen, Quoc Viet, Park, Hoon Cheol, Goo, Nam Seo, Byun, Doyoung. Characteristics of a Beetle's Free Flight and a Flapping-Wing System that Mimics Beetle Flight. Journal of bionics engineering, vol.7, no.1, 77-86.

  62. 2012 7 1748-3190 Bioinspir. Biomim. De Croon G C H E 

  63. 10.1109/IROS.2016.7759729 

  64. Roshanbin, A, Altartouri, H, Karásek, M, Preumont, A. COLIBRI: A hovering flapping twin-wing robot. International journal of micro air vehicles, vol.9, no.4, 270-282.

  65. Nguyen, Quoc V, Chan, Woei L, Debiasi, Marco. Experimental investigation of wing flexibility on force generation of a hovering flapping wing micro air vehicle with double wing clap-and-fling effects. International journal of micro air vehicles, vol.9, no.3, 187-197.

  66. 2008 10.1088/1748-3182/3/3/034001 3 1748-3190 Bioinspir. Biomim. Hedrick T 

  67. 2002 10.1242/jeb.205.16.2413 205 2413 J. Exp. Biol. Sun M 

  68. Sun, Mao, Lan, Shi Long. A computational study of the aerodynamic forces and power requirements of dragonfly (Aeschna juncea) hovering. The Journal of experimental biology, vol.207, no.11, 1887-1901.

  69. 10.2514/6.2006-34 

  70. Dickson, William B., Straw, Andrew D., Dickinson, Michael H.. Integrative Model of Drosophila Flight. AIAA journal, vol.46, no.9, 2150-2164.

  71. WHITNEY, J. P., WOOD, R. J.. Aeromechanics of passive rotation in flapping flight. Journal of fluid mechanics : JFM, vol.660, 197-220.

  72. BERGOU, ATTILA J., XU, SHENG, WANG, Z. JANE. Passive wing pitch reversal in insect flight. Journal of fluid mechanics : JFM, vol.591, 321-337.

  73. 1972 10.1242/jeb.56.1.79 56 79 0022-0949 J. Exp. Biol. Weis-Fogh T 

  74. The aerodynamics of hovering insect flight. VI. Lift and power requirements. Philosophical transactions of the Royal Society of London. Series B, Biological sciences, vol.305, no.1122, 145-181.

  75. Mao, Sun, Gang, Du. Lift and power requirements of hovering insect flight. Acta mechanica Sinica = 力學學報, vol.19, no.5, 458-469.

  76. Fry, Steven N., Sayaman, Rosalyn, Dickinson, Michael H.. The aerodynamics of hovering flight inDrosophila. The Journal of experimental biology, vol.208, no.12, 2303-2318.

  77. BERMAN, GORDON J., WANG, Z. JANE. Energy-minimizing kinematics in hovering insect flight. Journal of fluid mechanics : JFM, vol.582, 153-168.

  78. Liu, Hao. Integrated modeling of insect flight: From morphology, kinematics to aerodynamics. Journal of computational physics, vol.228, no.2, 439-459.

  79. Ke, X., Zhang, W., Cai, X., Chen, W.. Wing geometry and kinematic parameters optimization of flapping wing hovering flight for minimum energy. Aerospace science and technology, vol.64, 192-203.

  80. 2016 11 1748-3190 Bioinspir. Biomim. Phan H V 

  81. 2016 10.1088/1748-3190/11/4/046001 11 1748-3190 Bioinspir. Biomim. Nguyen T A 

  82. Van Truong, T., Le, T.Q., Byun, D., Park, H.C., Kim, M.. Flexible Wing Kinematics of a Free-Flying Beetle (Rhinoceros Beetle Trypoxylus Dichotomus). Journal of bionics engineering, vol.9, no.2, 177-184.

  83. Mazaheri, K., Ebrahimi, A.. Experimental investigation of the effect of chordwise flexibility on the aerodynamics of flapping wings in hovering flight. Journal of fluids and structures, vol.26, no.4, 544-558.

  84. 2017 12 1748-3190 Bioinspir. Biomim. Nan Y 

  85. 2009 10.1088/1748-3182/4/1/015003 4 1748-3190 Bioinspir. Biomim. Usherwood J R 

  86. 2002 10.1242/jeb.205.11.1547 205 1547 J. Exp. Biol. Usherwood J R 

  87. Taha, Haithem E., Hajj, Muhammad R., Nayfeh, Ali H.. Wing Kinematics Optimization for Hovering Micro Air Vehicles Using Calculus of Variation. Journal of aircraft, vol.50, no.2, 610-614.

  88. The aerodynamics of hovering insect flight. III. Kinematics. Philosophical transactions of the Royal Society of London. Series B, Biological sciences, vol.305, no.1122, 41-78.

LOADING...
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로