$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Prospect and Reality of Ni‐Rich Cathode for Commercialization

Advanced energy materials, v.8 no.6, 2018년, pp.1702028 -   

Kim, Junhyeok (Department of Energy Engineering School of Energy and Chemical Engineering Ulsan National Institute of Science and Technology (UNIST) 50, UNIST‐) ,  Lee, Hyomyung (gil Ulsan 44919 Republic of Korea) ,  Cha, Hyungyeon (Department of Energy Engineering School of Energy and Chemical Engineering Ulsan National Institute of Science and Technology (UNIST) 50, UNIST‐) ,  Yoon, Moonsu (gil Ulsan 44919 Republic of Korea) ,  Park, Minjoon (Department of Energy Engineering School of Energy and Chemical Engineering Ulsan National Institute of Science and Technology (UNIST) 50, UNIST‐) ,  Cho, Jaephil (gil Ulsan 44919 Republic of Korea)

Abstract AI-Helper 아이콘AI-Helper

AbstractThe layered nickel‐rich cathode materials are considered as promising cathode materials for lithium‐ion batteries (LIBs) due to their high reversible capacity and low cost. However, several significant challenges, such as the unstable powder properties and limited electrode den...

참고문헌 (175)

  1. Armand, M., Tarascon, J.-M.. Building better batteries. Nature, vol.451, no.7179, 652-657.

  2. Choi, Nam‐Soon, Chen, Zonghai, Freunberger, Stefan A., Ji, Xiulei, Sun, Yang‐Kook, Amine, Khalil, Yushin, Gleb, Nazar, Linda F., Cho, Jaephil, Bruce, Peter G.. Challenges Facing Lithium Batteries and Electrical Double‐Layer Capacitors. Angewandte Chemie. international edition, vol.51, no.40, 9994-10024.

  3. Kim, Tae‐Hee, Park, Jeong‐Seok, Chang, Sung Kyun, Choi, Seungdon, Ryu, Ji Heon, Song, Hyun‐Kon. The Current Move of Lithium Ion Batteries Towards the Next Phase. Advanced energy materials, vol.2, no.7, 860-872.

  4. Ohzuku, Tsutomu, Ueda, Atsushi, Kouguchi, Masaru. Synthesis and Characterization of LiAl1 / 4Ni3 / 4 O 2 ( R 3̄m ) for Lithium‐Ion (Shuttlecock) Batteries. Journal of the Electrochemical Society : JES, vol.142, no.12, 4033-4039.

  5. Arai, Hajime, Okada, Shigeto, Sakurai, Yoji, Yamaki, Jun-ichi. Thermal behavior of Li1−yNiO2 and the decomposition mechanism. Solid state ionics, vol.109, no.3, 295-302.

  6. Sun, Yang-Kook, Myung, Seung-Taek, Park, Byung-Chun, Prakash, Jai, Belharouak, Ilias, Amine, Khalil. High-energy cathode material for long-life and safe lithium batteries. Nature materials, vol.8, no.4, 320-324.

  7. Scrosati, B., Garche, J.. Lithium batteries: Status, prospects and future. Journal of power sources, vol.195, no.9, 2419-2430.

  8. Aurbach, Doron, Zaban, Arie, Schechter, Alexander, Ein‐Eli, Yair, Zinigrad, Ella, Markovsky, Boris. The Study of Electrolyte Solutions Based on Ethylene and Diethyl Carbonates for Rechargeable Li Batteries: I . Li Metal Anodes. Journal of the Electrochemical Society : JES, vol.142, no.9, 2873-2882.

  9. Liu, Hansan, Yang, Yong, Zhang, Jiujun. Reaction mechanism and kinetics of lithium ion battery cathode material LiNiO2 with CO2. Journal of power sources, vol.173, no.1, 556-561.

  10. Tasaki, Ken, Goldberg, Alex, Lian, Jian-Jie, Walker, Merry, Timmons, Adam, Harris, Stephen J.. Solubility of Lithium Salts Formed on the Lithium-Ion Battery Negative Electrode Surface in Organic Solvents. Journal of the Electrochemical Society : JES, vol.156, no.12, A1019-.

  11. Cho, Dae-Hyun, Jo, Chang-Heum, Cho, Woosuk, Kim, Young-Jun, Yashiro, Hitoshi, Sun, Yang-Kook, Myung, Seung-Taek. Effect of Residual Lithium Compounds on Layer Ni-Rich Li[Ni0.7Mn0.3]O2. Journal of the Electrochemical Society : JES, vol.161, no.6, A920-A926.

  12. Jung, Yoon Seok, Lu, Peng, Cavanagh, Andrew S., Ban, Chunmei, Kim, Gi‐Heon, Lee, Se‐Hee, George, Steven M., Harris, Stephen J., Dillon, Anne C.. Unexpected Improved Performance of ALD Coated LiCoO2/Graphite Li‐Ion Batteries. Advanced energy materials, vol.3, no.2, 213-219.

  13. Kim, Yongseon. Mechanism of gas evolution from the cathode of lithium-ion batteries at the initial stage of high-temperature storage. Journal of materials science, vol.48, no.24, 8547-8551.

  14. Robert, Rosa, Bünzli, Christa, Berg, Erik J., Novák, Petr. Activation Mechanism of LiNi0.80Co0.15Al0.05O2: Surface and Bulk Operando Electrochemical, Differential Electrochemical Mass Spectrometry, and X-ray Diffraction Analyses. Chemistry of materials : a publication of the American Chemical Society, vol.27, no.2, 526-536.

  15. Kim, Jisuk, Hong, Youngsik, Ryu, Kwang Sun, Kim, Min Gyu, Cho, Jaephil. Washing Effect of a LiNi[sub 0.83]Co[sub 0.15]Al[sub 0.02]O[sub 2] Cathode in Water. Electrochemical and solid-state letters, vol.9, no.1, A19-.

  16. Xiong, X., Wang, Z., Yue, P., Guo, H., Wu, F., Wang, J., Li, X.. Washing effects on electrochemical performance and storage characteristics of LiNi0.8Co0.1Mn0.1O2 as cathode material for lithium-ion batteries. Journal of power sources, vol.222, 318-325.

  17. Jouanneau, S., Eberman, K. W., Krause, L. J., Dahn, J. R.. Synthesis, Characterization, and Electrochemical Behavior of Improved Li[Ni[sub x]Co[sub 1−2x]Mn[sub x]]O[sub 2] (0.1≤x≤0.5). Journal of the Electrochemical Society : JES, vol.150, no.12, A1637-.

  18. Chang, Zhaorong, Chen, Zhongjun, Wu, Feng, Tang, Hongwei, Yuan, Xiao Zi, Wang, Haijiang. Synthesis and Characterization of Nonspherical LiCoO[sub 2] with High Tap Density by Two-Step Drying Method. Electrochemical and solid-state letters, vol.11, no.12, A229-.

  19. Marks, Thomas, Trussler, Simon, Smith, A. J., Xiong, Deijun, Dahn, J. R.. A Guide to Li-Ion Coin-Cell Electrode Making for Academic Researchers. Journal of the Electrochemical Society : JES, vol.158, no.1, A51-.

  20. Ellis, Brian L., Lee, Kyu Tae, Nazar, Linda F.. Positive Electrode Materials for Li-Ion and Li-Batteries. Chemistry of materials : a publication of the American Chemical Society, vol.22, no.3, 691-714.

  21. Liu, Wen, Oh, Pilgun, Liu, Xien, Lee, Min‐Joon, Cho, Woongrae, Chae, Sujong, Kim, Youngsik, Cho, Jaephil. Nickel‐Rich Layered Lithium Transition‐Metal Oxide for High‐Energy Lithium‐Ion Batteries. Angewandte Chemie. international edition, vol.54, no.15, 4440-4457.

  22. Manthiram, Arumugam, Knight, James C., Myung, Seung‐Taek, Oh, Seung‐Min, Sun, Yang‐Kook. Nickel‐Rich and Lithium‐Rich Layered Oxide Cathodes: Progress and Perspectives. Advanced energy materials, vol.6, no.1, 1501010-.

  23. Myung, Seung-Taek, Maglia, Filippo, Park, Kang-Joon, Yoon, Chong Seung, Lamp, Peter, Kim, Sung-Jin, Sun, Yang-Kook. Nickel-Rich Layered Cathode Materials for Automotive Lithium-Ion Batteries: Achievements and Perspectives. ACS energy letters, vol.2, no.1, 196-223.

  24. Cao, Chunhui, Zhang, Jian, Xie, Xiaohua, Xia, Baojia. Composition, structure, and performance of Ni-based cathodes in lithium ion batteries. Ionics, vol.23, no.6, 1337-1356.

  25. Chen, Z., Chao, D., Lin, J., Shen, Z.. Recent progress in surface coating of layered LiNixCoyMnzO2 for lithium-ion batteries. Materials research bulletin, vol.96, no.4, 491-502.

  26. Manthiram, Arumugam, Song, Bohang, Li, Wangda. A perspective on nickel-rich layered oxide cathodes for lithium-ion batteries. Energy storage materials, vol.6, 125-139.

  27. Schipper, Florian, Erickson, Evan M., Erk, Christoph, Shin, Ji-Yong, Chesneau, Frederick Francois, Aurbach, Doron. Review—Recent Advances and Remaining Challenges for Lithium Ion Battery Cathodes : I. Nickel-Rich, LiNixCoyMnzO2. Journal of the Electrochemical Society : JES, vol.164, no.1, A6220-A6228.

  28. Rahman, Md.K., Saito, Y.. Investigation of positive electrodes after cycle testing of high-power Li-ion battery cells. Journal of power sources, vol.174, no.2, 889-894.

  29. Zhuang, Guorong V, Chen, Guoying, Shim, Joongpyo, Song, Xiangyun, Ross, Philip N, Richardson, Thomas J. Li2CO3 in LiNi0.8Co0.15Al0.05O2 cathodes and its effects on capacity and power. Journal of power sources, vol.134, no.2, 293-297.

  30. Kim, Yongseon. Encapsulation of LiNi0.5Co0.2Mn0.3O2 with a thin inorganic electrolyte film to reduce gas evolution in the application of lithium ion batteries. Physical chemistry chemical physics : PCCP, vol.15, no.17, 6400-6405.

  31. Xiong, Xunhui, Ding, Dong, Bu, Yunfei, Wang, Zhixing, Huang, Bin, Guo, Huajun, Li, Xinhai. Enhanced electrochemical properties of a LiNiO2-based cathode material by removing lithium residues with (NH4)2HPO4. Journal of materials chemistry. A, Materials for energy and sustainability, vol.2, no.30, 11691-11696.

  32. Freunberger, Stefan A., Chen, Yuhui, Peng, Zhangquan, Griffin, John M., Hardwick, Laurence J., Bardé, Fanny, Novák, Petr, Bruce, Peter G.. Reactions in the Rechargeable Lithium–O2 Battery with Alkyl Carbonate Electrolytes. Journal of the American Chemical Society, vol.133, no.20, 8040-8047.

  33. Meini, Stefano, Tsiouvaras, Nikolaos, Schwenke, K. Uta, Piana, Michele, Beyer, Hans, Lange, Lukas, Gasteiger, Hubert A.. Rechargeability of Li–air cathodes pre-filled with discharge products using an ether-based electrolyte solution: implications for cycle-life of Li–air cells. Physical chemistry chemical physics : PCCP, vol.15, no.27, 11478-11493.

  34. Kim, Yongseon. Investigation of the gas evolution in lithium ion batteries: effect of free lithium compounds in cathode materials. Journal of solid state electrochemistry : current research and development in science and technology, vol.17, no.7, 1961-1965.

  35. Jo, Chang-Heum, Cho, Dae-Hyun, Noh, Hyung-Joo, Yashiro, Hithshi, Sun, Yang-Kook, Myung, Seung Taek. An effective method to reduce residual lithium compounds on Ni-rich Li[Ni0.6Co0.2Mn0.2]O2 active material using a phosphoric acid derived Li3PO4 nanolayer. Nano research, vol.8, no.5, 1464-1479.

  36. Jeong, Minseul, Lee, Min‐Joon, Cho, Jaephil, Lee, Sanghan. Surface Mn Oxidation State Controlled Spinel LiMn2O4 as a Cathode Material for High‐Energy Li‐Ion Batteries. Advanced energy materials, vol.5, no.13, 1500440-.

  37. Liu, S., Wu, H., Huang, L., Xiang, M., Liu, H., Zhang, Y.. Synthesis of Li2Si2O5-coated LiNi0.6Co0.2Mn0.2O2 cathode materials with enhanced high-voltage electrochemical properties for lithium-ion batteries. Journal of alloys and compounds, vol.674, 447-454.

  38. Oh, Pilgun, Song, Bohang, Li, Wangda, Manthiram, Arumugam. Overcoming the chemical instability on exposure to air of Ni-rich layered oxide cathodes by coating with spinel LiMn1.9Al0.1O4. Journal of materials chemistry. A, Materials for energy and sustainability, vol.4, no.16, 5839-5841.

  39. Lee, Suk-Woo, Kim, Myeong-Seong, Jeong, Jun Hui, Kim, Dong-Hyun, Chung, Kyung Yoon, Roh, Kwang Chul, Kim, Kwang-Bum. Li3PO4 surface coating on Ni-rich LiNi0.6Co0.2Mn0.2O2 by a citric acid assisted sol-gel method: Improved thermal stability and high-voltage performance. Journal of power sources, vol.360, 206-214.

  40. Yoon, Won-Sub, Hanson, Jonathan, McBreen, James, Yang, Xiao-Qing. A study on the newly observed intermediate structures during the thermal decomposition of nickel-based layered cathode materials using time-resolved XRD. Electrochemistry communications, vol.8, no.5, 859-862.

  41. Dahn, J.R., Fuller, E.W.. Thermal stability of LixCoO2, LixNiO2 and λ-MnO2 and consequences for the safety of Li-ion cells. Solid state ionics, vol.69, no.3, 265-270.

  42. Wang, Yadong, Jiang, Junwei, Dahn, J.R.. The reactivity of delithiated Li(Ni1/3Co1/3Mn1/3)O2, Li(Ni0.8Co0.15Al0.05)O2 or LiCoO2 with non-aqueous electrolyte. Electrochemistry communications, vol.9, no.10, 2534-2540.

  43. Belharouak, Ilias, Lu, Wenquan, Vissers, Donald, Amine, Khalil. Safety characteristics of Li(Ni0.8Co0.15Al0.05)O2 and Li(Ni1/3Co1/3Mn1/3)O2. Electrochemistry communications, vol.8, no.2, 329-335.

  44. Belharouak, I., Lu, W., Liu, J., Vissers, D., Amine, K.. Thermal behavior of delithiated Li(Ni0.8Co0.15Al0.05)O2 and Li1.1(Ni1/3Co1/3Mn1/3)0.9O2 powders. Journal of power sources, vol.174, no.2, 905-909.

  45. Belharouak, I., Vissers, D., Amine, K.. Thermal Stability of the Li(Ni[sub 0.8]Co[sub 0.15]Al[sub 0.05])O[sub 2] Cathode in the Presence of Cell Components. Journal of the Electrochemical Society : JES, vol.153, no.11, A2030-.

  46. Bak, Seong-Min, Nam, Kyung-Wan, Chang, Wonyoung, Yu, Xiqian, Hu, Enyuan, Hwang, Sooyeon, Stach, Eric A., Kim, Kwang-Bum, Chung, Kyung Yoon, Yang, Xiao-Qing. Correlating Structural Changes and Gas Evolution during the Thermal Decomposition of Charged LixNi0.8Co0.15Al0.05O2 Cathode Materials. Chemistry of materials : a publication of the American Chemical Society, vol.25, no.3, 337-351.

  47. Wen, Ten-Chin, Sivakumar, C, Gopalan, A. Studies on processable conducting blend of poly(diphenylamine) and poly(vinylidene fluoride). Materials letters, vol.54, no.5, 430-441.

  48. Zhao, Tao, Zhang, Lifen, Zhang, Zhengbiao, Zhou, Nianchen, Cheng, ZhenPing, Zhu, XiuLin. A novel approach to modify poly(vinylidene fluoride) via iron‐mediated atom transfer radical polymerization using activators generated by electron transfer. Journal of polymer science Part A, Polymer chemistry, vol.49, no.11, 2315-2324.

  49. Manzoli, M., Boccuzzi, F.. Characterisation of Co-based electrocatalytic materials for O2 reduction in fuel cells. Journal of power sources, vol.145, no.2, 161-168.

  50. Natali, M., Monti, M., Puglia, D., Kenny, J.M., Torre, L.. Ablative properties of carbon black and MWNT/phenolic composites: A comparative study. Composites. Part A, Applied science and manufacturing, vol.43, no.1, 174-182.

  51. Sellin, Rémy, Clacens, Jean-Marc, Coutanceau, Christophe. A thermogravimetric analysis/mass spectroscopy study of the thermal and chemical stability of carbon in the Pt/C catalytic system. Carbon, vol.48, no.8, 2244-2254.

  52. Bak, Seong-Min, Hu, Enyuan, Zhou, Yongning, Yu, Xiqian, Senanayake, Sanjaya D., Cho, Sung-Jin, Kim, Kwang-Bum, Chung, Kyung Yoon, Yang, Xiao-Qing, Nam, Kyung-Wan. Structural Changes and Thermal Stability of Charged LiNixMnyCozO2 Cathode Materials Studied by Combined In Situ Time-Resolved XRD and Mass Spectroscopy. ACS applied materials & interfaces, vol.6, no.24, 22594-22601.

  53. Nam, Kyung‐Wan, Bak, Seong‐Min, Hu, Enyuan, Yu, Xiqian, Zhou, Youngning, Wang, Xiaojian, Wu, Lijun, Zhu, Yimei, Chung, Kyung‐Yoon, Yang, Xiao‐Qing. Cathode Materials: Combining In Situ Synchrotron X‐Ray Diffraction and Absorption Techniques with Transmission Electron Microscopy to Study the Origin of Thermal Instability in Overcharged Cathode Materials for Lithium‐Ion Batteries (Adv. Funct. Mater. 8/2013). Advanced functional materials, vol.23, no.8, 1046-1046.

  54. Reed, J., Ceder, G.. Role of Electronic Structure in the Susceptibility of Metastable Transition-Metal Oxide Structures to Transformation. Chemical reviews, vol.104, no.10, 4513-4534.

  55. Madec, Lénaïc, Xia, Jian, Petibon, Rémi, Nelson, Kathlyne J., Sun, Jon-Paul, Hill, Ian G., Dahn, Jeff R.. Effect of Sulfate Electrolyte Additives on LiNi1/3Mn1/3Co1/3O2/Graphite Pouch Cell Lifetime: Correlation between XPS Surface Studies and Electrochemical Test Results. The journal of physical chemistry. C, Nanomaterials and Interfaces, vol.118, no.51, 29608-29622.

  56. El Ouatani, L., Dedryvère, R., Siret, C., Biensan, P., Reynaud, S., Iratçabal, P., Gonbeau, D.. The Effect of Vinylene Carbonate Additive on Surface Film Formation on Both Electrodes in Li-Ion Batteries. Journal of the Electrochemical Society : JES, vol.156, no.2, A103-.

  57. Aurbach, Doron. Review of selected electrode–solution interactions which determine the performance of Li and Li ion batteries. Journal of power sources, vol.89, no.2, 206-218.

  58. Aurbach, Doron, Ein‐Eli, Yair, Chusid (Youngman), Orit, Carmeli, Yaakov, Babai, Matsliach, Yamin, Herzel. The Correlation Between the Surface Chemistry and the Performance of Li‐Carbon Intercalation Anodes for Rechargeable ‘Rocking‐Chair’ Type Batteries. Journal of the Electrochemical Society : JES, vol.141, no.3, 603-611.

  59. Self, Julian, Aiken, C. P., Petibon, Remi, Dahn, J. R.. Survey of Gas Expansion in Li-Ion NMC Pouch Cells. Journal of the Electrochemical Society : JES, vol.162, no.6, A796-A802.

  60. Berkes, Balázs B., Schiele, Alexander, Sommer, Heino, Brezesinski, Torsten, Janek, Jürgen. On the gassing behavior of lithium-ion batteries with NCM523 cathodes. Journal of solid state electrochemistry : current research and development in science and technology, vol.20, no.11, 2961-2967.

  61. Xiong, D. J., Ellis, L. D., Nelson, K. J., Hynes, Toren, Petibon, R., Dahn, J. R.. Rapid Impedance Growth and Gas Production at the Li-Ion Cell Positive Electrode in the Absence of a Negative Electrode. Journal of the Electrochemical Society : JES, vol.163, no.14, A3069-A3077.

  62. Dougassa, Y.R., Tessier, C., El Ouatani, L., Anouti, M., Jacquemin, J.. Low pressure carbon dioxide solubility in lithium-ion batteries based electrolytes as a function of temperature. Measurement and prediction. The Journal of chemical thermodynamics, vol.61, 32-44.

  63. Xiong, D. J., Petibon, R., Nie, M., Ma, L., Xia, J., Dahn, J. R.. Interactions between Positive and Negative Electrodes in Li-Ion Cells Operated at High Temperature and High Voltage. Journal of the Electrochemical Society : JES, vol.163, no.3, A546-A551.

  64. Sloop, Steven E, Kerr, John B, Kinoshita, Kim. The role of Li-ion battery electrolyte reactivity in performance decline and self-discharge. Journal of power sources, vol.119, 330-337.

  65. Onuki, Masamichi, Kinoshita, Shinichi, Sakata, Yuuichi, Yanagidate, Miwa, Otake, Yumiko, Ue, Makoto, Deguchi, Masaki. Identification of the Source of Evolved Gas in Li-Ion Batteries Using [sup 13]C-labeled Solvents. Journal of the Electrochemical Society : JES, vol.155, no.11, A794-.

  66. Xing, Lidan, Li, Weishan, Wang, Chaoyang, Gu, Fenglong, Xu, Mengqing, Tan, Chunlin, Yi, Jin. Theoretical Investigations on Oxidative Stability of Solvents and Oxidative Decomposition Mechanism of Ethylene Carbonate for Lithium Ion Battery Use. The journal of physical chemistry. B, Condensed matter, materials, surfaces, interfaces & biophysical, vol.113, no.52, 16596-16602.

  67. Xing, Lidan, Borodin, Oleg. Oxidation induced decomposition of ethylene carbonate from DFT calculations – importance of explicitly treating surrounding solvent. Physical chemistry chemical physics : PCCP, vol.14, no.37, 12838-12843.

  68. Watanabe, S., Kinoshita, M., Hosokawa, T., Morigaki, K., Nakura, K.. Capacity fade of LiAlyNi1-x-yCoxO2 cathode for lithium-ion batteries during accelerated calendar and cycle life tests (surface analysis of LiAlyNi1-x-yCoxO2 cathode after cycle tests in restricted depth of discharge ranges). Journal of power sources, vol.258, 210-217.

  69. Kim, H.R., Woo, S.G., Kim, J.H., Cho, W., Kim, Y.J.. Capacity fading behavior of Ni-rich layered cathode materials in Li-ion full cells. Journal of electroanalytical chemistry, vol.782, 168-173.

  70. Dokko, Kaoru. In Situ Observation of LiNiO[sub 2] Single-Particle Fracture during Li-Ion Extraction and Insertion. Electrochemical and solid-state letters, vol.3, no.3, 125-.

  71. Li, Jing, Shunmugasundaram, Ramesh, Doig, Renny, Dahn, J. R.. In Situ X-ray Diffraction Study of Layered Li-Ni-Mn-Co Oxides: Effect of Particle Size and Structural Stability of Core-Shell Materials. Chemistry of materials : a publication of the American Chemical Society, vol.28, no.1, 162-171.

  72. Li, Jing, Downie, Laura E., Ma, Lin, Qiu, Wenda, Dahn, J. R.. Study of the Failure Mechanisms of LiNi0.8Mn0.1Co0.1O2 Cathode Material for Lithium Ion Batteries. Journal of the Electrochemical Society : JES, vol.162, no.7, A1401-A1408.

  73. Ghanty, Chandan, Markovsky, Boris, Erickson, Evan M., Talianker, Michael, Haik, Ortal, Tal‐Yossef, Yosef, Mor, Albert, Aurbach, Doron, Lampert, Jordan, Volkov, Aleksei, Shin, Ji‐Yong, Garsuch, Arnd, Chesneau, Frederick Francois, Erk, Christoph. Li+‐Ion Extraction/Insertion of Ni‐Rich Li1+x(NiyCozMnz)wO2 (0.005<x<0.03; y:z=8:1, w≈1) Electrodes: In Situ XRD and Raman Spectroscopy Study. ChemElectroChem, vol.2, no.10, 1479-1486.

  74. Lang, Michael, Darma, Mariyam Susana Dewi, Kleiner, Karin, Riekehr, Lars, Mereacre, Liuda, Ávila Pérez, Marta, Liebau, Verena, Ehrenberg, Helmut. Post mortem analysis of fatigue mechanisms in LiNi0.8Co0.15Al0.05O2 – LiNi0.5Co0.2Mn0.3O2 – LiMn2O4/graphite lithium ion batteries. Journal of power sources, vol.326, 397-409.

  75. Borner, M., Horsthemke, F., Kollmer, F., Haseloff, S., Friesen, A., Niehoff, P., Nowak, S., Winter, M., Schappacher, F.M.. Degradation effects on the surface of commercial LiNi0.5Co0.2Mn0.3O2 electrodes. Journal of power sources, vol.335, 45-55.

  76. ECS Trans. Dermenci K. B. 285 66 2015 10.1149/06609.0285ecst 

  77. Orikasa, Yuki, Gogyo, Yuma, Yamashige, Hisao, Katayama, Misaki, Chen, Kezheng, Mori, Takuya, Yamamoto, Kentaro, Masese, Titus, Inada, Yasuhiro, Ohta, Toshiaki, Siroma, Zyun, Kato, Shiro, Kinoshita, Hajime, Arai, Hajime, Ogumi, Zempachi, Uchimoto, Yoshiharu. Ionic Conduction in Lithium Ion Battery Composite Electrode Governs Cross-sectional Reaction Distribution. Scientific reports, vol.6, 26382-.

  78. Lee, Sang Gun, Jeon, Dong Hyup. Effect of electrode compression on the wettability of lithium-ion batteries. Journal of power sources, vol.265, 363-369.

  79. Kostecki, Robert, Lei, Jinglei, McLarnon, Frank, Shim, Joongpyo, Striebel, Kathryn. Diagnostic Evaluation of Detrimental Phenomena in High-Power Lithium-Ion Batteries. Journal of the Electrochemical Society : JES, vol.153, no.4, A669-.

  80. Kitada, K., Murayama, H., Fukuda, K., Arai, H., Uchimoto, Y., Ogumi, Z., Matsubara, E.. Factors determining the packing-limitation of active materials in the composite electrode of lithium-ion batteries. Journal of power sources, vol.301, 11-17.

  81. Kim, Gu-Yeon, Dahn, J. R.. Effects of Electrode Density on the Safety of NCA Positive Electrode for Li-Ion Batteries. Journal of the Electrochemical Society : JES, vol.160, no.8, A1108-A1111.

  82. Jiang, J., Dahn, J.R.. Effects of particle size and electrolyte salt on the thermal stability of Li0.5CoO2. Electrochimica acta, vol.49, no.16, 2661-2666.

  83. MacNeil, D. D., Dahn, J. R.. The Reactions of Li[sub 0.5]CoO[sub 2] with Nonaqueous Solvents at Elevated Temperatures. Journal of the Electrochemical Society : JES, vol.149, no.7, A912-.

  84. MacNeil, D. D., Dahn, J. R.. Can an Electrolyte for Lithium-Ion Batteries Be Too Stable?. Journal of the Electrochemical Society : JES, vol.150, no.1, A21-.

  85. MacNeil, D. D., Dahn, J. R.. The Reaction of Charged Cathodes with Nonaqueous Solvents and Electrolytes: I. Li[sub 0.5]CoO[sub 2]. Journal of the Electrochemical Society : JES, vol.148, no.11, A1205-.

  86. Chen, C.H., Liu, J., Stoll, M.E., Henriksen, G., Vissers, D.R., Amine, K.. Aluminum-doped lithium nickel cobalt oxide electrodes for high-power lithium-ion batteries. Journal of power sources, vol.128, no.2, 278-285.

  87. Liu, Hansan, Zhang, Zhongru, Gong, Zhengliang, Yang, Yong. A comparative study of LiNi0.8Co0.2O2 cathode materials modified by lattice-doping and surface-coating. Solid state ionics, vol.166, no.3, 317-325.

  88. El Mofid, W., Ivanov, S., Konkin, A., Bund, A.. A high performance layered transition metal oxide cathode material obtained by simultaneous aluminum and iron cationic substitution. Journal of power sources, vol.268, 414-422.

  89. Huang, B., Li, X., Wang, Z., Guo, H., Xiong, X.. Synthesis of Mg-doped LiNi0.8Co0.15Al0.05O2 oxide and its electrochemical behavior in high-voltage lithium-ion batteries. Ceramics international, vol.40, no.8, 13223-13230.

  90. Aurbach, Doron, Srur-Lavi, Onit, Ghanty, Chandan, Dixit, Mudit, Haik, Ortal, Talianker, Michael, Grinblat, Yehudit, Leifer, Nicole, Lavi, Ronit, Major, Dan Thomas, Goobes, Gil, Zinigrad, Ella, Erickson, Evan M., Kosa, Monica, Markovsky, Boris, Lampert, Jordan, Volkov, Aleksei, Shin, Ji-Yong, Garsuch, Arnd. Studies of Aluminum-Doped LiNi0.5Co0.2Mn0.3O2: Electrochemical Behavior, Aging, Structural Transformations, and Thermal Characteristics. Journal of the Electrochemical Society : JES, vol.162, no.6, A1014-A1027.

  91. Improved cyclic stability of LiNi0.8Co0.1Mn0.1O2 via Ti substitution with a cut-off potential of 4.5V. Ceramics international, vol.41, no.5, 7133-7139.

  92. Huang, Z., Wang, Z., Zheng, X., Guo, H., Li, X., Jing, Q., Yang, Z.. Effect of Mg doping on the structural and electrochemical performance of LiNi0.6Co0.2Mn0.2O2 cathode materials. Electrochimica acta, vol.182, 795-802.

  93. Li, X., Xie, Z., Liu, W., Ge, W., Wang, H., Qu, M.. Effects of fluorine doping on structure, surface chemistry, and electrochemical performance of LiNi0.8Co0.15Al0.05O2. Electrochimica acta, vol.174, 1122-1130.

  94. Huang, Zhenjun, Wang, Zhixing, Guo, Huajun, Li, Xinhai. Influence of Mg2+ doping on the structure and electrochemical performances of layered LiNi0.6Co0.2-x Mn0.2Mg x O2 cathode materials. Journal of alloys and compounds, vol.671, 479-485.

  95. Huang, Z., Wang, Z., Jing, Q., Guo, H., Li, X., Yang, Z.. Investigation on the effect of Na doping on structure and Li-ion kinetics of layered LiNi0.6Co0.2Mn0.2O2 cathode material. Electrochimica acta, vol.192, 120-126.

  96. Li, Yunjiao, Su, Qianye, Han, Qiang, Li, Puliang, Li, Ling, Xu, Chunrui, Cao, Xinlong, Cao, Guolin. Synthesis and characterization of Mo-doped LiNi0.5Co0.2Mn0.3O2 cathode materials prepared by a hydrothermal process. Ceramics international, vol.43, no.4, 3483-3488.

  97. Min, Kyoungmin, Seo, Seung-Woo, Song, You Young, Lee, Hyo Sug, Cho, Eunseog. A first-principles study of the preventive effects of Al and Mg doping on the degradation in LiNi0.8Co0.1Mn0.1O2 cathode materials. Physical chemistry chemical physics : PCCP, vol.19, no.3, 1762-1769.

  98. Yang, Zuguang, Xiang, Wei, Wu, Zhenguo, He, Fengrong, Zhang, Jun, Xiao, Yao, Zhong, Benhe, Guo, Xiaodong. Effect of niobium doping on the structure and electrochemical performance of LiNi0.5Co0.2Mn0.3O2 cathode materials for lithium ion batteries. Ceramics international, vol.43, no.4, 3866-3872.

  99. Sun, Yang-Kook, Kim, Dong-Hui, Yoon, Chong Seung, Myung, Seung-Taek, Prakash, Jai, Amine, Khalil. A Novel Cathode Material with a Concentration-Gradient for High-Energy and Safe Lithium-Ion Batteries. Advanced functional materials, vol.20, no.3, 485-491.

  100. Sun, Yang-Kook, Chen, Zonghai, Noh, Hyung-Joo, Lee, Dong-Ju, Jung, Hun-Gi, Ren, Yang, Wang, Steve, Yoon, Chong Seung, Myung, Seung-Taek, Amine, Khalil. Nanostructured high-energy cathode materials for advanced lithium batteries. Nature materials, vol.11, no.11, 942-947.

  101. Lim, Byung‐Beom, Yoon, Sung‐Jun, Park, Kang‐Joon, Yoon, Chong S., Kim, Sung‐Jin, Lee, Juhyon J., Sun, Yang‐Kook. Advanced Concentration Gradient Cathode Material with Two‐Slope for High‐Energy and Safe Lithium Batteries. Advanced functional materials, vol.25, no.29, 4673-4680.

  102. Adv. Energy Mater. Kim U.‐H. 1601417 7 2016 10.1002/aenm.201601417 

  103. Lee, Joo Hyeong, Yoon, Chong S., Hwang, Jang-Yeon, Kim, Sung-Jin, Maglia, Filippo, Lamp, Peter, Myung, Seung-Taek, Sun, Yang-Kook. High-energy-density lithium-ion battery using a carbon-nanotube–Si composite anode and a compositionally graded Li[Ni0.85Co0.05Mn0.10]O2 cathode. Energy & environmental science, vol.9, no.6, 2152-2158.

  104. Lim, Byung-Beom, Myung, Seung-Taek, Yoon, Chong S., Sun, Yang-Kook. Comparative Study of Ni-Rich Layered Cathodes for Rechargeable Lithium Batteries: Li[Ni0.85Co0.11Al0.04]O2 and Li[Ni0.84Co0.06Mn0.09Al0.01]O2 with Two-Step Full Concentration Gradients. ACS energy letters, vol.1, no.1, 283-289.

  105. Cho, Jaephil, Kim, Tae-Joon, Kim, Jisuk, Noh, Mijung, Park, Byungwoo. Synthesis, Thermal, and Electrochemical Properties of AlPO[sub 4]-Coated LiNi[sub 0.8]Co[sub 0.1]Mn[sub 0.1]O[sub 2] Cathode Materials for a Li-Ion Cell. Journal of the Electrochemical Society : JES, vol.151, no.11, A1899-.

  106. Cho, Yonghyun, Cho, Jaephil. Significant Improvement of LiNi[sub 0.8]Co[sub 0.15]Al[sub 0.05]O[sub 2] Cathodes at 60°C by SiO[sub 2] Dry Coating for Li-Ion Batteries. Journal of the Electrochemical Society : JES, vol.157, no.6, A625-.

  107. Eom, Junho, Sun Ryu, Kwang, Cho, Jaephil. Dependence of Electrochemical Behavior on Concentration and Annealing Temperature of Li[sub x]CoPO[sub 4] Phase-Grown LiNi[sub 0.8]Co[sub 0.16]Al[sub 0.04]O[sub 2] Cathode Materials. Journal of the Electrochemical Society : JES, vol.155, no.3, A228-.

  108. Kim, Yoojung, Cho, Jaephil. Lithium-Reactive Co[sub 3](PO[sub 4])[sub 2] Nanoparticle Coating on High-Capacity LiNi[sub 0.8]Co[sub 0.16]Al[sub 0.04]O[sub 2] Cathode Material for Lithium Rechargeable Batteries. Journal of the Electrochemical Society : JES, vol.154, no.6, A495-.

  109. Lee, Hyunjung, Kim, Yoojung, Hong, Young-Sik, Kim, Yoojin, Kim, Min Gyu, Shin, Nam-Soo, Cho, Jaephil. Structural Characterization of the Surface-Modified Li[sub x]Ni[sub 0.9]Co[sub 0.1]O[sub 2] Cathode Materials by MPO[sub 4] Coating (M=Al, Ce, SrH, and Fe) for Li-Ion Cells. Journal of the Electrochemical Society : JES, vol.153, no.4, A781-.

  110. Wu, Zhongzhen, Ji, Shunping, Liu, Tongchao, Duan, Yandong, Xiao, Shu, Lin, Yuan, Xu, Kang, Pan, Feng. Aligned Li+ Tunnels in Core–Shell Li(NixMnyCoz)O2@LiFePO4 Enhances Its High Voltage Cycling Stability as Li-ion Battery Cathode. Nano letters : a journal dedicated to nanoscience and nanotechnology, vol.16, no.10, 6357-6363.

  111. Chen, Y., Zhang, Y., Chen, B., Wang, Z., Lu, C.. An approach to application for LiNi0.6Co0.2Mn0.2O2 cathode material at high cutoff voltage by TiO2 coating. Journal of power sources, vol.256, 20-27.

  112. Laskar, Masihhur R., Jackson, David H. K., Guan, Yingxin, Xu, Shenzhen, Fang, Shuyu, Dreibelbis, Mark, Mahanthappa, Mahesh K., Morgan, Dane, Hamers, Robert J., Kuech, Thomas F.. Atomic Layer Deposition of Al2O3–Ga2O3 Alloy Coatings for Li[Ni0.5Mn0.3Co0.2]O2 Cathode to Improve Rate Performance in Li-Ion Battery. ACS applied materials & interfaces, vol.8, no.16, 10572-10580.

  113. Li, Xifei, Liu, Jian, Banis, Mohammad Norouzi, Lushington, Andrew, Li, Ruying, Cai, Mei, Sun, Xueliang. Atomic layer deposition of solid-state electrolyte coated cathode materials with superior high-voltage cycling behavior for lithium ion battery application. Energy & environmental science, vol.7, no.2, 768-778.

  114. Lee, Ji-Hoon, Kim, Ji Woo, Kang, Ho-Young, Kim, Seul Cham, Han, Sang Sub, Oh, Kyu Hwan, Lee, Se-Hee, Joo, Young-Chang. The effect of energetically coated ZrOx on enhanced electrochemical performances of Li(Ni1/3Co1/3Mn1/3)O2 cathodes using modified radio frequency (RF) sputtering. Journal of materials chemistry. A, Materials for energy and sustainability, vol.3, no.24, 12982-12991.

  115. Riley, L.A., Van Atta, S., Cavanagh, A.S., Yan, Y., George, S.M., Liu, P., Dillon, A.C., Lee, S.H.. Electrochemical effects of ALD surface modification on combustion synthesized LiNi1/3Mn1/3Co1/3O2 as a layered-cathode material. Journal of power sources, vol.196, no.6, 3317-3324.

  116. Kim, Hyejung, Lee, Sanghan, Cho, Hyeon, Kim, Junhyeok, Lee, Jieun, Park, Suhyeon, Joo, Se Hun, Kim, Su Hwan, Cho, Yoon‐Gyo, Song, Hyun‐Kon, Kwak, Sang Kyu, Cho, Jaephil. Enhancing Interfacial Bonding between Anisotropically Oriented Grains Using a Glue‐Nanofiller for Advanced Li‐Ion Battery Cathode. Advanced materials, vol.28, no.23, 4705-4712.

  117. Cho, Jaephil, Kim, Tae-Joon, Kim, Yong Jeong, Park, Byungwoo. High-Performance ZrO[sub 2]-Coated LiNiO[sub 2] Cathode Material. Electrochemical and solid-state letters, vol.4, no.10, A159-.

  118. Qin, CanCan, Cao, JiaLi, Chen, Jun, Dai, GaoLe, Wu, TongFu, Chen, Yanbin, Tang, YueFeng, Li, AiDong, Chen, Yanfeng. Improvement of electrochemical performance of nickel rich LiNi0.6Co0.2Mn0.2O2 cathode active material by ultrathin TiO2 coating. Dalton transactions : an international journal of inorganic chemistry, vol.45, no.23, 9669-9675.

  119. Mohanty, Debasish, Dahlberg, Kevin, King, David M., David, Lamuel A., Sefat, Athena S., Wood, David L., Daniel, Claus, Dhar, Subhash, Mahajan, Vishal, Lee, Myongjai, Albano, Fabio. Modification of Ni-Rich FCG NMC and NCA Cathodes by Atomic Layer Deposition: Preventing Surface Phase Transitions for High-Voltage Lithium-Ion Batteries. Scientific reports, vol.6, 26532-.

  120. Kim, Hyejung, Kim, Min Gyu, Jeong, Hu Young, Nam, Haisol, Cho, Jaephil. A New Coating Method for Alleviating Surface Degradation of LiNi0.6Co0.2Mn0.2O2 Cathode Material: Nanoscale Surface Treatment of Primary Particles. Nano letters : a journal dedicated to nanoscience and nanotechnology, vol.15, no.3, 2111-2119.

  121. Cho, Yonghyun, Oh, Pilgun, Cho, Jaephil. A New Type of Protective Surface Layer for High-Capacity Ni-Based Cathode Materials: Nanoscaled Surface Pillaring Layer. Nano letters : a journal dedicated to nanoscience and nanotechnology, vol.13, no.3, 1145-1152.

  122. Lee, Min-Joon, Noh, Mijung, Park, Mi-Hee, Jo, Minki, Kim, Hyejung, Nam, Haisol, Cho, Jaephil. The role of nanoscale-range vanadium treatment in LiNi0.8Co0.15Al0.05O2 cathode materials for Li-ion batteries at elevated temperatures. Journal of materials chemistry. A, Materials for energy and sustainability, vol.3, no.25, 13453-13460.

  123. Son, In Hyuk, Park, Jong Hwan, Kwon, Soonchul, Mun, Junyoung, Choi, Jang Wook. Self-Terminated Artificial SEI Layer for Nickel-Rich Layered Cathode Material via Mixed Gas Chemical Vapor Deposition. Chemistry of materials : a publication of the American Chemical Society, vol.27, no.21, 7370-7379.

  124. Cho, Yonghyun, Lee, Sanghan, Lee, Yongseok, Hong, Taeeun, Cho, Jaephil. Spinel‐Layered Core‐Shell Cathode Materials for Li‐Ion Batteries. Advanced energy materials, vol.1, no.5, 821-828.

  125. Kong, Ji-Zhou, Ren, Chong, Tai, Guo-An, Zhang, Xiang, Li, Ai-Dong, Wu, Di, Li, Hui, Zhou, Fei. Ultrathin ZnO coating for improved electrochemical performance of LiNi0.5Co0.2Mn0.3O2 cathode material. Journal of power sources, vol.266, 433-439.

  126. Kim, J.W., Travis, J.J., Hu, E., Nam, K.W., Kim, S.C., Kang, C.S., Woo, J.H., Yang, X.Q., George, S.M., Oh, K.H., Cho, S.J., Lee, S.H.. Unexpected high power performance of atomic layer deposition coated Li[Ni1/3Mn1/3Co1/3]O2 cathodes. Journal of power sources, vol.254, 190-197.

  127. Pouillerie, C., Croguennec, L., Biensan, Ph., Willmann, P., Delmas, C.. Synthesis and Characterization of New LiNi[sub 1−y]Mg[sub y]O[sub 2] Positive Electrode Materials for Lithium-Ion Batteries. Journal of the Electrochemical Society : JES, vol.147, no.6, 2061-.

  128. Liu, Wen, Oh, Pilgun, Liu, Xien, Myeong, Seungjun, Cho, Woongrae, Cho, Jaephil. Countering Voltage Decay and Capacity Fading of Lithium‐Rich Cathode Material at 60 °C by Hybrid Surface Protection Layers. Advanced energy materials, vol.5, no.13, 1500274-.

  129. Kang, Kisuk, Meng, Ying Shirley, Bréger, Julien, Grey, Clare P., Ceder, Gerbrand. Electrodes with High Power and High Capacity for Rechargeable Lithium Batteries. Science, vol.311, no.5763, 977-980.

  130. Liu, Jun, Zhang, Ji‐Guang, Yang, Zhenguo, Lemmon, John P., Imhoff, Carl, Graff, Gordon L., Li, Liyu, Hu, Jianzhi, Wang, Chongmin, Xiao, Jie, Xia, Gordon, Viswanathan, Vilayanur V., Baskaran, Suresh, Sprenkle, Vincent, Li, Xiaolin, Shao, Yuyan, Schwenzer, Birgit. Materials Science and Materials Chemistry for Large Scale Electrochemical Energy Storage: From Transportation to Electrical Grid. Advanced functional materials, vol.23, no.8, 929-946.

  131. Wang, Kai‐Xue, Li, Xin‐Hao, Chen, Jie‐Sheng. Surface and Interface Engineering of Electrode Materials for Lithium‐Ion Batteries. Advanced materials, vol.27, no.3, 527-545.

  132. Sun, Y.-K., Myung, S.-T., Kim, M.-H., Prakash, J., Amine, K.. Synthesis and Characterization of Li[(Ni0.8Co0.1Mn0.1)0.8(Ni0.5Mn0.5)0.2]O2 with the Microscale Core−Shell Structure as the Positive Electrode Material for Lithium Batteries. Journal of the American Chemical Society, vol.127, no.38, 13411-13418.

  133. Sun, Y.-K., Myung, S.-T., Shin, H.-S., Bae, Y. C., Yoon, C. S.. Novel Core−Shell-Structured Li[(Ni0.8Co0.2)0.8(Ni0.5Mn0.5)0.2]O2 via Coprecipitation as Positive Electrode Material for Lithium Secondary Batteries. The journal of physical chemistry. B, Condensed matter, materials, surfaces, interfaces & biophysical, vol.110, no.13, 6810-6815.

  134. Sun, Y.-K., Myung, S.-T., Park, B.-C., Amine, K.. Synthesis of Spherical Nano- to Microscale Core−Shell Particles Li[(Ni0.8Co0.1Mn0.1)1-x(Ni0.5Mn0.5)x]O2 and Their Applications to Lithium Batteries. Chemistry of materials : a publication of the American Chemical Society, vol.18, no.22, 5159-5163.

  135. Song, Dawei, Hou, Peiyu, Wang, Xiaoqing, Shi, Xixi, Zhang, Lianqi. Understanding the Origin of Enhanced Performances in Core–Shell and Concentration-Gradient Layered Oxide Cathode Materials. ACS applied materials & interfaces, vol.7, no.23, 12864-12872.

  136. Kim, Junhyeok, Cho, Hyeon, Jeong, Hu Young, Ma, Hyunsoo, Lee, Jieun, Hwang, Jaeseong, Park, Minjoon, Cho, Jaephil. Self‐Induced Concentration Gradient in Nickel‐Rich Cathodes by Sacrificial Polymeric Bead Clusters for High‐Energy Lithium‐Ion Batteries. Advanced energy materials, vol.7, no.12, 1602559-.

  137. Hyuk Son, In, Park, Kwangjin, Hwan Park, Jong. Improvement in high-voltage and high rate cycling performance of nickel-rich layered cathode materials via facile chemical vapor deposition with methane. Electrochimica acta, vol.230, 308-315.

  138. Hinuma, Y., Meng, Y. S., Kang, K., Ceder, G.. Phase Transitions in the LiNi0.5Mn0.5O2 System with Temperature. Chemistry of materials : a publication of the American Chemical Society, vol.19, no.7, 1790-1800.

  139. Moskon, J., Dominko, R., Cerc-Korosec, R., Gaberscek, M., Jamnik, J.. Morphology and electrical properties of conductive carbon coatings for cathode materials. Journal of power sources, vol.174, no.2, 683-688.

  140. Adv. Powder Technol. Doan T. N. L. 187 21 2010 10.1016/j.apt.2009.10.016 

  141. Zhao, Jianqing, Qu, Guoying, Flake, John C., Wang, Ying. Low temperature preparation of crystalline ZrO2 coatings for improved elevated-temperature performances of Li-ion battery cathodes. Chemical communications : Chem comm, vol.48, no.65, 8108-8110.

  142. George, Steven M.. Atomic Layer Deposition: An Overview. Chemical reviews, vol.110, no.1, 111-131.

  143. Dokko, Kaoru. In Situ Observation of LiNiO[sub 2] Single-Particle Fracture during Li-Ion Extraction and Insertion. Electrochemical and solid-state letters, vol.3, no.3, 125-.

  144. Aurbach, D, Markovsky, B, Rodkin, A, Levi, E, Cohen, Y.S, Kim, H.-J, Schmidt, M. On the capacity fading of LiCoO2 intercalation electrodes: : the effect of cycling, storage, temperature, and surface film forming additives. Electrochimica acta, vol.47, no.27, 4291-4306.

  145. Edström, K., Gustafsson, T., Thomas, J.O.. The cathode–electrolyte interface in the Li-ion battery. Electrochimica acta, vol.50, no.2, 397-403.

  146. Haik, Ortal, Leifer, Nicole, Samuk-Fromovich, Zvi, Zinigrad, Ella, Markovsky, Boris, Larush, Liraz, Goffer, Yossi, Goobes, Gil, Aurbach, Doron. On the Surface Chemistry of LiMO[sub 2] Cathode Materials (M=[MnNi] and [MnNiCo]): Electrochemical, Spectroscopic, and Calorimetric Studies. Journal of the Electrochemical Society : JES, vol.157, no.10, A1099-.

  147. Jung, Sung‐Kyun, Gwon, Hyeokjo, Hong, Jihyun, Park, Kyu‐Young, Seo, Dong‐Hwa, Kim, Haegyeom, Hyun, Jangsuk, Yang, Wooyoung, Kang, Kisuk. Understanding the Degradation Mechanisms of LiNi0.5Co0.2Mn0.3O2 Cathode Material in Lithium Ion Batteries. Advanced energy materials, vol.4, no.1, 1300787-.

  148. Lin, Feng, Markus, Isaac M., Nordlund, Dennis, Weng, Tsu-Chien, Asta, Mark D., Xin, Huolin L., Doeff, Marca M.. Surface reconstruction and chemical evolution of stoichiometric layered cathode materials for lithium-ion batteries. Nature communications, vol.5, 3529-.

  149. Kim, Yongseon. Lithium Nickel Cobalt Manganese Oxide Synthesized Using Alkali Chloride Flux: Morphology and Performance As a Cathode Material for Lithium Ion Batteries. ACS applied materials & interfaces, vol.4, no.5, 2329-2333.

  150. Li, Jing, Cameron, Andrew R., Li, Hongyang, Glazier, Stephen, Xiong, Deijun, Chatzidakis, M., Allen, Jenn, Botton, G. A., Dahn, J. R.. Comparison of Single Crystal and Polycrystalline LiNi0.5Mn0.3Co0.2O2 Positive Electrode Materials for High Voltage Li-Ion Cells. Journal of the Electrochemical Society : JES, vol.164, no.7, A1534-A1544.

  151. Adv. Energy Mater. Zhao J. 1601266 2016 

  152. Idris, M. Sobri, West, A. R.. The Effect on Cathode Performance of Oxygen Non-Stoichiometry and Interlayer Mixing in Layered Rock Salt LiNi0.8Mn0.1Co0.1O2-δ. Journal of the Electrochemical Society : JES, vol.159, no.4, A396-A401.

  153. Lee, S.W., Kim, H., Kim, M.S., Youn, H.C., Kang, K., Cho, B.W., Roh, K.C., Kim, K.B.. Improved electrochemical performance of LiNi0.6Co0.2Mn0.2O2 cathode material synthesized by citric acid assisted sol-gel method for lithium ion batteries. Journal of power sources, vol.315, 261-268.

  154. Lin, S.P, Fung, K.Z, Hon, Y.M, Hon, M.H. Crystallization mechanism of LiNiO2 synthesized by Pechini method. Journal of crystal growth, vol.226, no.1, 148-157.

  155. Sasaki, Tsuyoshi, Nonaka, Takamasa, Oka, Hideaki, Okuda, Chikaaki, Itou, Yuichi, Kondo, Yasuhito, Takeuchi, Yoji, Ukyo, Yoshio, Tatsumi, Kazuyoshi, Muto, Shunsuke. Capacity-Fading Mechanisms of LiNiO[sub 2]-Based Lithium-Ion Batteries. Journal of the Electrochemical Society : JES, vol.156, no.4, A289-.

  156. Lee, Jinhyuk, Urban, Alexander, Li, Xin, Su, Dong, Hautier, Geoffroy, Ceder, Gerbrand. Unlocking the Potential of Cation-Disordered Oxides for Rechargeable Lithium Batteries. Science, vol.343, no.6170, 519-522.

  157. Li, Wangda, Dolocan, Andrei, Oh, Pilgun, Celio, Hugo, Park, Suhyeon, Cho, Jaephil, Manthiram, Arumugam. Dynamic behaviour of interphases and its implication on high-energy-density cathode materials in lithium-ion batteries. Nature communications, vol.8, 14589-.

  158. Zhu, Jianxin, Vo, Thinh, Li, Dongsheng, Lu, Richard, Kinsinger, Nichola M., Xiong, Laj, Yan, Yushan, Kisailus, David. Crystal Growth of Li[Ni1/3Co1/3Mn1/3]O2 as a CathodeMaterial for High-PerformanceLithium Ion Batteries. Crystal growth & design, vol.12, no.3, 1118-1123.

  159. Shi, S.J., Tu, J.P., Tang, Y.Y., Liu, X.Y., Zhao, X.Y., Wang, X.L., Gu, C.D.. Morphology and electrochemical performance of Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode materials treated in molten salts. Journal of power sources, vol.241, 186-195.

  160. Chang, Z.R., Yu, X., Tang, H.W., Yuan, X.Z., Wang, H.. Synthesis of LiNi1/3Co1/3Al1/3O2 cathode material with eutectic molten salt LiOH-LiNO3. Powder technology, vol.207, no.1, 396-400.

  161. Bugaris, Daniel E., zur Loye, Hans‐Conrad. Materials Discovery by Flux Crystal Growth: Quaternary and Higher Order Oxides. Angewandte Chemie. international edition, vol.51, no.16, 3780-3811.

  162. Teshima, Katsuya, Inagaki, Hikaru, Tanaka, Syohei, Yubuta, Kunio, Hozumi, Masato, Kohama, Keiichi, Shishido, Toetsu, Oishi, Shuji. Growth of Well-Developed Li4Ti5O12 Crystals by the Cooling of a Sodium Chloride Flux. Crystal growth & design, vol.11, no.10, 4401-4405.

  163. Teshima, Katsuya, Lee, SunHyung, Mizuno, Yusuke, Inagaki, Hikaru, Hozumi, Masato, Kohama, Keiichi, Yubuta, Kunio, Shishido, Toetsu, Oishi, Shuji. Environmentally Friendly Growth of Well-Developed LiCoO2 Crystals for Lithium-Ion Rechargeable Batteries Using a NaCl Flux. Crystal growth & design, vol.10, no.10, 4471-4475.

  164. Kimura, Toshio, Yamaguchi, Takashi. Morphology of Bi2WO6 powders obtained in the presence of fused salts. Journal of materials science, vol.17, no.7, 1863-1870.

  165. Hayashi, Yoshihiro, Kimura, Toshio, Yamaguchi, Takashi. Preparation of rod-shaped BaTiO3 powder. Journal of materials science, vol.21, no.3, 757-762.

  166. Zhu, Xinhua, Zhou, Jun, Jiang, Mengchao, Xie, Jun, Liang, Shuang, Li, Shuyi, Liu, Zidong, Zhu, Yingying, Zhu, Jianmin, Liu, Zhiguo, Viehland, D. D.. Molten Salt Synthesis of Bismuth Ferrite Nano‐ and Microcrystals and their Structural Characterization. Journal of the American Ceramic Society, vol.97, no.7, 2223-2232.

  167. Park, Jun‐Hong, Lee, Dae‐Hee, Shin, Hyo‐Soon, Lee, Byung‐Kyo. Transition of the Particle‐Growth Mechanism with Temperature Variation in the Molten‐Salt Method. Journal of the American Ceramic Society, vol.79, no.4, 1130-1132.

  168. Oishi, S., Teshima, K., Kondo, H.. Flux Growth of Hexagonal Bipyramidal Ruby Crystals. Journal of the American Chemical Society, vol.126, no.15, 4768-4769.

  169. Kimijima, T., Zettsu, N., Yubuta, K., Hirata, K., Kami, K., Teshima, K.. Molybdate flux growth of idiomorphic Li(Ni1/3Co1/3Mn1/3)O2 single crystals and characterization of their capabilities as cathode materials for lithium-ion batteries. Journal of materials chemistry. A, Materials for energy and sustainability, vol.4, no.19, 7289-7296.

  170. Jiang, X., Chu, S., Chen, Y., Zhong, Y., Liu, Y., Shao, Z.. LiNi0.29Co0.33Mn0.38O2 polyhedrons with reduced cation mixing as a high-performance cathode material for Li-ion batteries synthesized via a combined co-precipitation and molten salt heating technique. Journal of alloys and compounds, vol.691, 206-214.

  171. Kimijima, Takeshi, Zettsu, Nobuyuki, Teshima, Katsuya. Growth Manner of Octahedral-Shaped Li(Ni1/3Co1/3Mn1/3)O2 Single Crystals in Molten Na2SO4. Crystal growth & design, vol.16, no.5, 2618-2623.

  172. Lin, Chaohong, Zhang, Yongzhi, Chen, Li, Lei, Ying, Ou, Junke, Guo, Yong, Yuan, Hongyan, Xiao, Dan. Hydrogen peroxide assisted synthesis of LiNi1/3Co1/3Mn1/3O2 as high-performance cathode for lithium-ion batteries. Journal of power sources, vol.280, 263-271.

  173. Han, X., Meng, Q., Sun, T., Sun, J.. Preparation and electrochemical characterization of single-crystalline spherical LiNi1/3Co1/3Mn1/3O2 powders cathode material for Li-ion batteries. Journal of power sources, vol.195, no.10, 3047-3052.

  174. Huang, Zhen-Dong, Liu, Xian-Ming, Oh, Sei-Woon, Zhang, Biao, Ma, Peng-Cheng, Kim, Jang-Kyo. Microscopically porous, interconnected single crystal LiNi1/3Co1/3Mn1/3O2 cathode material for Lithium ion batteries. Journal of materials chemistry, vol.21, no.29, 10777-10784.

  175. Wang, L., Wu, B., Mu, D., Liu, X., Peng, Y., Xu, H., Liu, Q., Gai, L., Wu, F.. Single-crystal LiNi0.6Co0.2Mn0.2O2 as high performance cathode materials for Li-ion batteries. Journal of alloys and compounds, vol.674, 360-367.

LOADING...

관련 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로