$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Bio-Functional Design, Application and Trends in Metallic Biomaterials 원문보기

International journal of molecular sciences, v.19 no.1, 2018년, pp.24 -   

Yang, Ke (School of Mechanical Engineering and Automation, Xihua University, Chengdu 610039, China) ,  Zhou, Changchun (yangke493@163.com) ,  Fan, Hongsong (National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China) ,  Fan, Yujiang (hsfan@scu.edu.cn (H.F.)) ,  Jiang, Qing (Fan_yujiang@scu.edu.cn (Y.F.)) ,  Song, Ping (jiangq@scu.edu.cn (Q.J.)) ,  Fan, Hongyuan (zhangxd@scu.edu.cn (X.Z.)) ,  Chen, Yu (National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China) ,  Zhang, Xingdong (hsfan@scu.edu.cn (H.F.))

Abstract AI-Helper 아이콘AI-Helper

Introduction of metals as biomaterials has been known for a long time. In the early development, sufficient strength and suitable mechanical properties were the main considerations for metal implants. With the development of new generations of biomaterials, the concepts of bioactive and biodegradabl...

Keyword

참고문헌 (145)

  1. 1. Xu G. Fu X. Du C. Ma J. Li Z. Tian P. Zhang T. Ma X. Biomechanical comparison of mono-segment transpedicular fixation with short-segment fixation for treatment of thoracolumbar fractures: A finite element analysis Proc. Inst. Mech. Eng. J. Part H Eng. Med. 2014 228 1005 1013 10.1177/0954411914552308 25267283 

  2. 2. Guo B. Lei B. Li P. Ma P.X. Functionalized scaffolds to enhance tissue regeneration Regen. Biomater. 2015 2 47 57 10.1093/rb/rbu016 25844177 

  3. 3. Pownder S.L. Koff M.F. Shah P.H. Fortier L.A. Potter H.G. Magnetic resonance imaging of an equine fracture model containing stainless steel metal implants Equine Vet. J. 2016 48 321 325 10.1111/evj.12424 25627908 

  4. 4. Hudetz D. Ursic Hudetz S. Harris L.G. Luginbuhl R. Friederich N.F. Landmann R. Weak effect of metal type and ica genes on staphylococcal infection of titanium and stainless steel implants Clin. Microbiol. Infect. 2008 14 1135 1145 10.1111/j.1469-0691.2008.02096.x 19046165 

  5. 5. Hench L.L. Polak J.M. Third-generation biomedical materials Science 2002 295 10.1126/science.1067404 11834817 

  6. 6. Hench L.L. Xynos I.D. Polak J.M. Bioactive glasses for in situ tissue regeneration J. Biomater. Sci. Polym. Ed. 2004 15 543 562 10.1163/156856204323005352 15212333 

  7. 7. Hench L.L. The story of Bioglass J. Mater. Sci. Mater. Med. 2006 17 967 978 10.1007/s10856-006-0432-z 17122907 

  8. 8. Hench L.L. Boccaccini A.R. Day R.M. Gabe S.M. Third-generation gene-activating biomaterials Mater. Sci. Forum 2003 426–432 179 184 10.4028/www.scientific.net/MSF.426-432.179 

  9. 9. Mousa H.M. Tiwari A.P. Kim J. Adhikari S.P. Park C.H. Kim C.S. A novel in situ deposition of hydroxyapatite nanoplates using anodization/hydrothermal process onto magnesium alloy surface towards third generation biomaterials Mater. Lett. 2016 164 144 147 10.1016/j.matlet.2015.10.145 

  10. 10. Vallittu P.K. Bioactive glass-containing cranial implants: An overview J. Mater. Sci. 2017 52 8772 8784 10.1007/s10853-017-0888-x 

  11. 11. Chen X.H. Geng Y.X. Pan F.S. Research progress in magnesium alloys as functional materials Rare Met. Mater. Eng. 2016 45 2269 2274 

  12. 12. Chen Y.Q. Zhang W.T. Maitz M.F. Chen M.Y. Zhang H. Mao J.L. Zhao Y.C. Huang N. Wan G.J. Comparative corrosion behavior of Zn with Fe and Mg in the course of immersion degradation in phosphate buffered saline Corros. Sci. 2016 111 541 555 10.1016/j.corsci.2016.05.039 

  13. 13. Liu X.W. Sun J.K. Zhou F.Y. Yang Y.H. Chang R.C. Qiu K.J. Pu Z.J. Li L. Zheng Y.F. Micro-alloyingwith Mn in Zn-Mg alloy for future biodegradable metals application Mater. Des. 2016 94 95 104 10.1016/j.matdes.2015.12.128 

  14. 14. Ma J. Zhao N. Betts L. Zhu D.H. Bio-adaption between magnesium alloy stent and the blood vessel: A review J. Mater. Sci. Technol. 2016 32 815 826 10.1016/j.jmst.2015.12.018 27698548 

  15. 15. Miura C. Shimizu Y. Imai Y. Mukai T. Yamamoto A. Sano Y. Ikeo N. Isozaki S. Takahashi T. Oikawa M. In vivo corrosion behaviour of magnesium alloy in association with surrounding tissue response in rats Biomed. Mater. 2016 11 10.1088/1748-6041/11/2/025001 26947358 

  16. 16. Torne K. Larsson M. Norlin A. Weissenrieder J. Degradation of zinc in saline solutions, plasma, and whole blood J. Biomed. Mater. Res. B 2016 104 1141 1151 10.1002/jbm.b.33458 26061136 

  17. 17. Bian D. Zhou W.R. Liu Y. Li N. Zheng Y.F. Sun Z.L. Fatigue behaviors of HP-Mg, Mg-Ca and Mg-Zn-Ca biodegradable metals in air and simulated body fluid Acta Biomater. 2016 41 351 360 10.1016/j.actbio.2016.05.031 27221795 

  18. 18. Su J.S. Xu H.Z. Sun J. Gong X. Zhao H. Dual delivery of BMP-2 and bFGF from a new nano-composite scaffold, loaded with vascular stents for large-size mandibular defect regeneration Int. J. Mol. Sci. 2013 14 12714 12728 10.3390/ijms140612714 23778088 

  19. 19. Xu H.Z. Su J.S. Sun J. Ren T.B. Preparation and characterization of new nano-composite scaffolds loaded with vascular stents Int. J. Mol. Sci. 2012 13 3366 3381 10.3390/ijms13033366 22489156 

  20. 20. Gabler C. Zietz C. Gohler R. Fritsche A. Lindner T. Haenle M. Finke B. Meichsner J. Lenz S. Frerich B. Evaluation of osseointegration of titanium alloyed implants modified by plasma polymerization Int. J. Mol. Sci. 2014 15 2454 2464 10.3390/ijms15022454 24521883 

  21. 21. Yang D.H. Moon S.W. Lee D.W. Surface modification of titanium with BMP-2/GDF-5 by a heparin linker and its efficacy as a dental implant Int. J. Mol. Sci. 2017 18 229 10.3390/ijms18010229 28124978 

  22. 22. Wang X.Z. Zhang Y.F. Choukroun J. Ghanaati S. Miron R.J. Behavior of gingival fibroblasts on Titanium implant surfaces in combination with either injectable-PRF or PRP Int. J. Mol. Sci. 2017 18 10.3390/ijms18020331 28165420 

  23. 23. Zhao X.J. Wang T. Qian S. Liu X.Y. Sun J.Y. Li B. Silicon-doped titanium dioxide nanotubes promoted bone formation on titanium implants Int. J. Mol. Sci. 2016 17 292 10.3390/ijms17030292 26927080 

  24. 24. Matena J. Petersen S. Gieseke M. Kampmann A. Teske M. Beyerbach M. Escobar H.M. Haferkamp H. Gellrich N.C. Nolte I. SLM produced porous titanium implant improvements for enhanced vascularization and osteoblast seeding Int. J. Mol. Sci. 2015 16 7478 7492 10.3390/ijms16047478 25849656 

  25. 25. Chowdhary R. Jimbo R. Thomsen C. Carlsson L. Wennerberg A. Biomechanical evaluation of macro and micro designed screw-type implants: An insertion torque and removal torque study in rabbits Clin. Oral Implants Res. 2013 24 342 346 10.1111/j.1600-0501.2011.02336.x 22151544 

  26. 26. Zhang Q. Cheng C.K. Wei H.W. Dong X. Chen Y.T. Lai Y.S. Wang Y. Biomechanical comparisons between a new avascular necrosis of femaral head stem based on Chinese patients with avascular necrosis and two other designs Chin. Med. J. Peking 2013 126 1918 1924 

  27. 27. Cheng C.K. McClean C.J. Lai Y.S. Chen W.C. Huang C.H. Lin K.J. Chang C.M. Biomechanical considerations in the design of high-flexion total knee replacements Sci. World J. 2014 10.1155/2014/205375 24892040 

  28. 28. Prashanth S.E.K.G. Attar H. Chaubey A.K. Cao G.H. Zhang L.C. Evaluation of mechanical and wear properties of TixNb7Fe alloys designed for biomedical applications Mater. Des. 2016 111 592 599 

  29. 29. Attar H. Ehtemam-Haghighi S. Kent D. Wu X.H. Dargusch M.S. Comparative study of commercially pure titanium produced by laser engineered net shaping, selective laser melting and casting processes Mater. Sci. Eng. A Struct. 2017 705 385 393 10.1016/j.msea.2017.08.103 

  30. 30. Ansari F. Pack L.K. Brooks S.S. Morrison T.M. Design considerations for studies of the biomechanical environment of the femoropopliteal arteries J. Vasc. Surg. 2013 58 804 813 10.1016/j.jvs.2013.03.052 23870198 

  31. 31. Jones R.K. Zhang M. Laxton P. Findlow A.H. Liu A.M. The biomechanical effects of a new design of lateral wedge insole on the knee and ankle during walking Hum. Mov. Sci. 2013 32 596 604 10.1016/j.humov.2012.12.012 24054897 

  32. 32. Pereira V.A. Iamashita H.Y. Monnazzi M.S. Gabrielli M.F.R. Vaz L.G. Passeri L.A. In vitro biomechanical evaluation of sagittal split osteotomy fixation with a specifically designed miniplate Int. J. Oral Maxillofac. Surg. 2013 42 316 320 10.1016/j.ijom.2012.07.008 22898312 

  33. 33. Lin H.M. Liu C.L. Pan Y.N. Huang C.H. Shih S.L. Wei S.H. Chen C.S. Biomechanical analysis and design of a dynamic spinal fixator using topology optimization: A finite element analysis Med. Biol. Eng. Comput. 2014 52 499 508 10.1007/s11517-014-1154-x 24737048 

  34. 34. Hu Z. Thiyagarajan K. Bhusal A. Letcher T. Fan Q.H. Liu Q. Salem D. Design of ultra-lightweight and high-strength cellular structural composites inspired by biomimetics Compos. Part B Eng. 2017 121 108 121 10.1016/j.compositesb.2017.03.033 

  35. 35. Okulov I.V. Volegov A.S. Attar H. Bonisch M. Ehternam-Haghighi S. Calin M. Eckert J. Composition optimization of low modulus and high-strength TiNb-based alloys for biomedical applications J. Mech. Behav. Biomed. 2017 65 866 871 10.1016/j.jmbbm.2016.10.013 27810733 

  36. 36. Suer B.T. Kocyigit I.D. Kaman S. Tuz H.H. Tekin U. Atil F. Biomechanical evaluation of a new design titanium miniplate for the treatment of mandibular angle fractures Int. J. Oral Maxillofac. Surg. 2014 43 841 845 10.1016/j.ijom.2014.01.011 24582290 

  37. 37. Serhan M. Verim O. Eroglu M. Altinel L. Gokce B. Tasgetiren S. Biomechanical evaluation of syndesmotic screw design via finite element analysis and Taguchi’s method JAPMA 2015 105 14 21 

  38. 38. Liu D.X. Hua Z.K. Yan X.Y. Jin Z.M. Design and biomechanical study of a novel adjustable hemipelvic prosthesis Med. Eng. Phys. 2016 38 1416 1425 10.1016/j.medengphy.2016.09.017 27720636 

  39. 39. Khan Y.M. Nair L.S. Review of “Biomaterials for Musculoskeletal Regeneration: Concepts, by Bikramjit Basu, Indian Institute of Metals Series, Springer Nature (2016)” and “Biomaterials for Musculoskeletal Regeneration: Applications, by Bikramjit Basu and Sourabh Ghosh, Indian Institute of Metals Series, Springer Nature (2016)” J. Mater. Sci. 2017 10.1007/s10853-017-1430-x 

  40. 40. Zhou J.J. Zhao M. Liu D. Liu H.Y. Du C.F. Biomechanical Property of a Newly Designed Assembly Locking Compression Plate: Three-Dimensional Finite Element Analysis J. Healthc. Eng. 2017 10.1155/2017/8590251 29065654 

  41. 41. Muiznieks L.D. Keeley F.W. Biomechanical Design of Elastic Protein Biomaterials: A Balance of Protein Structure and Conformational Disorder ACS Biomater. Sci. Eng. 2017 3 661 679 10.1021/acsbiomaterials.6b00469 

  42. 42. Liu J.T. Chen W.C. Wei H.W. Biomechanical evaluation of a dynamic fusion cage design for cervical spine: A finite element study Adv. Mech. Eng. 2017 9 10.1177/1687814017698881 

  43. 43. Tang Z.X. Li L.Y. Guo W.P. Jiang W.T. Fan Y.B. Topology optimization on configuration of titanium reconstruction plate for bridging mandibular angle defect J. Med. Biomech. 2014 29 167 173 

  44. 44. Guo W. Li Y. Tang Z. Jiang W. Fan Y. Finite element modeling of the mandible with temporomandibular joint J. Biomed. Eng. Res. 2013 3 57 65 10.3871/j.1004-7220.2015.05.421 

  45. 45. Wan Z.P. Wang C. Jiang W.T. Huang Z.Y. Wang Q.Y. On the effect of void defects on stress distribution of Ti-6Al-4V alloy fatigue specimen in 3D printing J. Exp. Mech. 2017 32 1 8 

  46. 46. Zunino P. D’Aangelo C. Petrini L. Vergara C. Capelli C. Numerical simulation of drug eluting coronary stents: Mechanics, fluid dynamics and drug release Comput. Methods Appl. Mech. Eng. 2009 198 3633 3644 10.1016/j.cma.2008.07.019 

  47. 47. Chen Y. Xiong Y. Jiang W. Wong M.S. Yan F. Wang Q. Fan Y. Numerical simulation on the effects ofdrug-eluting stents with different bending angles on hemodynamics and drug distribution Med. Biol. Eng. Comput. 2016 54 1859 1867 10.1007/s11517-016-1488-7 27048391 

  48. 48. Chen Y. Numerical study on effects of drug-coating position of drug-eluting stents on drug concentration J. Med. Biol. Eng. 2015 34 487 494 10.5405/jmbe.1570 

  49. 49. Shah F.A. Snis A. Matic A. Thomsen P. Palmquist A. 3D printed Ti6Al4V implant surface promotes bone maturation and retains a higher density of less aged osteocytes at the bone-implant interface Acta Biomater. 2016 30 357 367 10.1016/j.actbio.2015.11.013 26577985 

  50. 50. Wu Y. Liu Q. Fu J. Li Q. Hui D. Dynamic crash responses of bio-inspired aluminum honeycomb sandwich structures with CFRP panels Compos. Part B Eng. 2017 121 122 133 10.1016/j.compositesb.2017.03.030 

  51. 51. Galdos M.V.G. Pastore J.I. Ballarre J. Cere S.M. Dual-surface modification of titanium alloy with anodizing treatment and bioceramic particles for enhancing prosthetic devices J. Mater. Sci. 2017 52 9151 9165 10.1007/s10853-017-1079-5 

  52. 52. Habibovic P. Gbureck U. Doillon C.J. Bassett D.C. van Blitterswijk C.A. Barralet J.E. Osteoconduction and osteoinduction of low-temperature 3D printed bioceramic implants Biomaterials 2008 29 944 953 10.1016/j.biomaterials.2007.10.023 18055009 

  53. 53. Liu A. Xue G.H. Sun M. Shao H.F. Ma C.Y. Gao Q. Gou Z.R. Yan S.G. Liu Y.M. He Y. 3D Printing Surgical Implants at the clinic: A Experimental Study on Anterior Cruciate Ligament Reconstruction Sci. Rep. 2016 6 10.1038/srep21704 26875826 

  54. 54. Mobbs R.J. Coughlan M. Thompson R. Sutterlin C.E. Phan K. The utility of 3D printing for surgical planning and patient-specific implant design for complex spinal pathologies: Case report J. Neurosurg. Spine 2017 26 513 518 10.3171/2016.9.SPINE16371 28106524 

  55. 55. Palmquist A. Shah F.A. Emanuelsson L. Omar O. Suska F. A technique for evaluating bone ingrowth into 3D printed, porous Ti6Al4V implants accurately using X-ray micro-computed tomography and histomorphometry Micron 2017 94 1 8 10.1016/j.micron.2016.11.009 27960108 

  56. 56. Tran P. Ngo T.D. Ghazlan A. Hui D. Bimaterial 3D printing and numerical analysis of bio-inspired composite structures under in-plane and transverse loadings Compos. Part B Eng. 2017 108 210 223 10.1016/j.compositesb.2016.09.083 

  57. 57. Yang F. Chen C. Zhou Q.R. Gong Y.M. Li R.X. Li C.C. Klampfl F. Freund S. Wu X.W. Sun Y. Laser beam melting 3D printing of Ti6Al4V based porous structured dental implants: Fabrication, biocompatibility analysis and photoelastic study Sci. Rep. 2017 7 10.1038/srep45360 28350007 

  58. 58. Zhang Z. Wang B. Hui D. Qiu J. Wang S. 3D bioprinting of soft materials-based regenerative vascular structures and tissues Compos. Part B Eng. 2017 123 279 291 10.1016/j.compositesb.2017.05.011 

  59. 59. Wang X. Jiang M. Zhou Z. Gou J. Hui D. 3D printing of polymer matrix composites: A review and prospective Compos. Part B Eng. 2017 110 442 458 10.1016/j.compositesb.2016.11.034 

  60. 60. Pandele A.M. Ionita M. Crica L. Vasile E. Iovu H. Novel Chitosan-poly(vinyl alcohol)/graphene oxide biocomposites 3D porous scaffolds Compos. Part B Eng. 2017 126 81 87 10.1016/j.compositesb.2017.06.010 

  61. 61. Pei X. Zhang B. Fan Y. Zhu X. Sun Y. Wang Q. Zhang X. Zhou C. Bionic mechanical design of titanium bone tissue implants and 3D printing manufacture Mater. Lett. 2017 10.1016/j.matlet.2017.04.128 

  62. 62. Momeni F. Hassani N.S.M.M. Liu X. Ni J. A review of 4D printing Mater. Des. 2017 122 42 79 10.1016/j.matdes.2017.02.068 

  63. 63. Kaczmarek M. Jurczyk K. Koper J.K. Paszel-Jaworska A. Romaniuk A. Lipinska N. Zurawski J. Urbaniak P. Jakubowicz J. Jurczyk M.U. In vitro biocompatibility of anodized titanium with deposited silver nanodendrites J. Mater. Sci. 2016 51 5259 5270 10.1007/s10853-016-9829-3 

  64. 64. Lux F. Zeisler R. Investigations of corrosive deposition of components of metal implants and of behavior of biological trace-elements in metallosis tissue by means of instrumental multi-element activation-analysis J. Radioanal. Nucl. Chem. 1974 19 289 297 10.1007/BF02518564 

  65. 65. Boke F. Schickle K. Fischer H. Biological activation of inert ceramics: Recent advances using tailored self-assembled monolayers on implant ceramic surfaces Materials 2014 7 4473 4492 10.3390/ma7064473 28788687 

  66. 66. Ostrovska L. Vistejnova L. Dzugan J. Slama P. Kubina T. Ukraintsev E. Kubies D. Kralickova M. Kalbacova M.H. Biological evaluation of ultra-fine titanium with improved mechanical strength for dental implant engineering J. Mater. Sci. 2016 51 3097 3110 10.1007/s10853-015-9619-3 

  67. 67. Ribeiro A.M. Flores-Sahagun T.H.S. Paredes R.C. A perspective on molybdenum biocompatibility and antimicrobial activity for applications in implants J. Mater. Sci. 2016 51 2806 2816 10.1007/s10853-015-9664-y 

  68. 68. Choy M.-T. Tang C.-Y. Chen L. Law W.-C. Tsui C.-P. Lu W.W. Microwave assisted- synthesis of porous titanium/calcium phosphate composites and their apatite-forming capability Compos. Part B Eng. 2015 83 50 57 10.1016/j.compositesb.2015.08.046 

  69. 69. Balas F. Kawashita M. Nakamura T. Kokubo T. Formation of bone-like apatite on organic polymers treated with a silane-coupling agent and a titania solution Biomaterials 2006 27 1704 1710 10.1016/j.biomaterials.2005.10.004 16257050 

  70. 70. Leonor I.B. Balas F. Kawashita M. Reis R.L. Kokubo T. Nakamura T. Biomimetic apatite formation on different polymeric microspheres modified with calcium silicate solutions Key Eng. Mater. 2006 309–311 279 282 10.4028/www.scientific.net/KEM.309-311.279 

  71. 71. Leonor I.B. Kim H.M. Balas F. Kawashita M. Reis R.L. Kokubo T. Nakamura T. Formation of bone-like apatite on polymeric surfaces modified with-SO 3 H groups Adv. Mater. Forum III 2006 514–516 966 969 10.4028/www.scientific.net/MSF.514-516.966 

  72. 72. Zhou C.C. Ye X.J. Fan Y.J. Qing F.Z. Chen H.J. Zhang X.D. Synthesis and characterization of CaP/Col composite scaffolds for load-bearing bone tissue engineering Compos. Part B Eng. 2014 62 242 248 10.1016/j.compositesb.2014.03.008 

  73. 73. Pattanayak D.K. Yamaguchi S. Matsushita T. Nakamura T. Kokubo T. Apatite-forming ability of titanium in terms of pH of the exposed solution J. R. Soc. Interface 2012 9 2145 2155 10.1098/rsif.2012.0107 22417910 

  74. 74. Kokubo T. Yamaguchi S. Growth of novel ceramic layers on metals via chemical and heat treatments for inducing various biological functions Front. Bioeng. Biotechnol. 2015 3 176 10.3389/fbioe.2015.00176 26579517 

  75. 75. Lin J.H. Chang C.H. Chen Y.S. Lin G.T. Formation of bone-like apatite on titanium filaments incubated in a simulated body fluid by using an electrochemical method Compos. Part A Appl. Sci. Manuf. 2007 38 535 539 10.1016/j.compositesa.2006.02.013 

  76. 76. Cui X.Y. Kim H.M. Kawashita M. Wang L.B. Xiong T.Y. Kokubo T. Nakamura T. Apatite formation on anodized Ti-6Al-4V alloy in simulated body fluid Met. Mater. Int. 2010 16 407 412 10.1007/s12540-010-0610-x 

  77. 77. Chavan P.N. Bahir M.M. Mene R.U. Mahabole M.P. Khairnar R.S. Study of nanobiomaterial hydroxyapatite in simulated body fluid: Formation and growth of apatite Mater. Sci. Eng. B Adv. 2010 168 224 230 10.1016/j.mseb.2009.11.012 

  78. 78. Kang K.-T. Koh Y.-G. Son J. Yeom J.S. Park J.-H. Kim H.-J. Biomechanical evaluation of pedicle screw fixation system in spinal adjacent levels using polyetheretherketone, carbon-fiber-reinforced polyetheretherketone, and traditional titanium as rod materials Compos. Part B Eng. 2017 130 248 256 10.1016/j.compositesb.2017.07.052 

  79. 79. Yoshida E. Hayakawa T. Quantitative analysis of apatite formation on titanium and zirconia in a simulated body fluid solution using the quartz crystal microbalance method Adv. Mater. Sci. Eng. 2017 10.1155/2017/7928379 

  80. 80. Zhao C.Y. Zhu X.D. Yuan T. Fan H.S. Zhang X.D. Fabrication of biomimetic apatite coating on porous titanium and their osteointegration in femurs of dogs Mater. Sci. Eng. C 2010 30 98 104 

  81. 81. Gu X.N. Xie X.H. Li N. Zheng Y.F. Qin L. In vitro and in vivo studies on a Mg-Sr binary alloy system developed as a new kind of biodegradable metal Acta Biomater. 2012 8 2360 2374 10.1016/j.actbio.2012.02.018 22387336 

  82. 82. Li H.F. Zheng Y.F. Qin L. Progress of biodegradable metals Prog. Nat. Sci. Mater. Int. 2014 24 414 422 10.1016/j.pnsc.2014.08.014 

  83. 83. Zheng Y.F. Gu X.N. Witte F. Biodegradable metals Mat. Sci. Eng. R Rep. 2014 77 1 34 10.1016/j.mser.2014.01.001 

  84. 84. Li H.F. Zheng Y.F. Recent advances in bulk metallic glasses for biomedical applications Acta Biomater. 2016 36 1 20 10.1016/j.actbio.2016.03.047 27045349 

  85. 85. Wang C. Yang H.T. Li X. Zheng Y.F. In vitro evaluation of the feasibility of commercial Zn alloys as biodegradable metals J. Mater. Sci. Technol. 2016 32 909 918 10.1016/j.jmst.2016.06.003 

  86. 86. Bajger P. Ashbourn J.M. Manhas V. Guyot Y. Lietaert K. Geris L. Mathematical modelling of the degradation behaviour of biodegradable metals Biomech. Model. Mechanobiol. 2016 10.1007/s10237-016-0812-3 27502687 

  87. 87. Tang Z.B. Huang H. Niu J.L. Zhang L. Zhang H. Pei J. Tan J.Y. Yuan G.Y. Design and characterizations of novel biodegradable Zn-Cu-Mg alloys for potential biodegradable implants Mater. Des. 2017 117 84 94 10.1016/j.matdes.2016.12.075 

  88. 88. Dambatta M.S. Izman S. Kurniawan D. Farahany S. Yahaya B. Hermawan H. Influence of thermal treatment on microstructure, mechanical and degradation properties of Zn-3Mg alloy as potential biodegradable implant material Mater. Des. 2015 85 431 437 10.1016/j.matdes.2015.06.181 

  89. 89. Piela K. Wrobel M. Sztwiertnia K. Jaskowski M. Kawalko J. Bieda M. Kiper M. Jarzebska A. Zinc subjected to plastic deformation by complex loading and conventional extrusion: Comparison of the microstructure and mechanical properties Mater. Des. 2017 117 111 120 10.1016/j.matdes.2016.12.056 

  90. 90. Cacciotti I. Bivalent cationic ions doped bioactive glasses: The influence of magnesium, zinc, strontium and copper on the physical and biological properties J. Mater. Sci. 2017 52 8812 8831 10.1007/s10853-017-1010-0 

  91. 91. Almutairi A. Sun Z.H. Al Safran Z. Poovathumkadavi A. Albader S. Ifdailat H. Optimal scanning protocols for dual-energy CT angiography in peripheral arterial stents: An in vitro phantom study Int. J. Mol. Sci. 2015 16 11531 11549 10.3390/ijms160511531 26006234 

  92. 92. Silva C.L.P. Oliveira A.C. Costa C.G.F. Figueiredo R.B. Leite M.D. Pereira M.M. Lins V.F.C. Langdon T.G. Effect of severe plastic deformation on the biocompatibility and corrosion rate of pure magnesium J. Mater. Sci. 2017 52 5992 6003 10.1007/s10853-017-0835-x 

  93. 93. Kim Y.K. Park I.S. Lee K.B. Lee S.J. Bae T.S. Lee M.H. Characterization and biocompatibility of a calcium-containing AZ31B alloy as a biodegradable material J. Mater. Sci. 2015 50 4672 4682 10.1007/s10853-015-9018-9 

  94. 94. Gao H. Ye W.B. Zhang Z. Gao L.L. Ratcheting behavior of ZEK100 magnesium alloy with various loading conditions and different immersing time J. Mater. Res. 2017 32 2143 2152 10.1557/jmr.2017.104 

  95. 95. Gao H. Zhang M. Zhao J. Gao L.L. Li M.S. In vitro and in vivo degradation and mechanical properties of ZEK100 magnesium alloy coated with alginate, chitosan and mechano-growth factor Mater. Sci. Eng. C Mater. Biol. Appl. 2016 63 450 461 10.1016/j.msec.2016.02.073 27040239 

  96. 96. Li H. He W. Pang S. Liaw P.K. Zhang T. In vitro responses of bone-forming MC3T3-E1 pre-osteoblasts to biodegradable Mg-based bulk metallic glasses Mater. Sci. Eng. C Mater. Biol. Appl. 2016 68 632 641 10.1016/j.msec.2016.06.022 27524063 

  97. 97. Nayak S. Bhushan B. Jayaganthan R. Gopinath P. Agarwal R.D. Lahiri D. Strengthening of Mg based alloy through grain refinement for orthopaedic application J. Mech. Behav. Biomed. Mater. 2016 59 57 70 10.1016/j.jmbbm.2015.12.010 26745721 

  98. 98. Zhang J. Xu C. Jing Y. Lv S. Liu S. Fang D. Zhuang J. Zhang M. Wu R. New horizon for high performance Mg-based biomaterial with uniform degradation behavior: Formation of stacking faults Sci. Rep. 2015 5 13933 10.1038/srep13933 26349676 

  99. 99. Li H.F. Pang S.J. Liu Y. Sun L.L. Liaw P.K. Zhang T. Biodegradable Mg-Zn-Ca-Sr bulk metallic glasses with enhanced corrosion performance for biomedical applications Mater. Des. 2015 67 9 19 10.1016/j.matdes.2014.10.085 

  100. 100. Christie J.K. Atomic structure of biodegradable Mg-based bulk metallic glass Phys. Chem. Chem. Phys. 2015 17 12894 12898 10.1039/C4CP03714F 25906985 

  101. 101. Ratna Sunil B. Sampath Kumar T.S. Chakkingal U. Nandakumar V. Doble M. Nano-hydroxyapatite reinforced AZ31 magnesium alloy by friction stir processing: A solid state processing for biodegradable metal matrix composites J. Mater. Sci. Mater. Med. 2014 25 975 988 10.1007/s10856-013-5127-7 24375146 

  102. 102. Zhang Y. Forsyth M. Hinton B.R. The effect of treatment temperature on corrosion resistance and hydrophilicity of an ionic liquid coating for Mg-based stents ACS Appl. Mater. Interfaces 2014 6 18989 18997 10.1021/am506825d 25317893 

  103. 103. Willbold E. Kalla K. Bartsch I. Bobe K. Brauneis M. Remennik S. Shechtman D. Nellesen J. Tillmann W. Vogt C. Biocompatibility of rapidly solidified magnesium alloy RS66 as a temporary biodegradable metal Acta Biomater. 2013 9 8509 8517 10.1016/j.actbio.2013.02.015 23416472 

  104. 104. Chen D. He Y. Tao H. Zhang Y. Jiang Y. Zhang X. Zhang S. Biocompatibility of magnesium-zinc alloy in biodegradable orthopedic implants Int. J. Mol. Med. 2011 28 343 348 21617843 

  105. 105. Qin C. Hu Q. Li Y. Wang Z. Zhao W. Louzguine-Luzgin D.V. Inoue A. Novel bioactive Fe-based metallic glasses with excellent apatite-forming ability Mater. Sci. Eng. C Mater. Biol. Appl. 2016 69 513 521 10.1016/j.msec.2016.07.022 27612742 

  106. 106. Li Y.J. Wang Y.G. An B. Xu H. Liu Y. Zhang L.C. Ma H.Y. Wang W.M. A practical anodic and cathodic curve intersection model to understand multiple corrosion potentials of fe-based glassy alloys in OH-contained solutions PLoS ONE 2016 11 e0146421 10.1371/journal.pone.0146421 26771194 

  107. 107. Fagali N.S. Grillo C.A. Puntarulo S. Fernandez Lorenzo de Mele M.A. Cytotoxicity of corrosion products of degradable Fe-based stents: Relevance of pH and insoluble products Colloids Surf. B Biointerfaces 2015 128 480 488 10.1016/j.colsurfb.2015.02.047 25797480 

  108. 108. Li S. Wei Q. Li Q. Jiang B. Chen Y. Sun Y. Development of Fe-based bulk metallic glasses as potential biomaterials Mater. Sci. Eng. C Mater. Biol. Appl. 2015 52 235 241 10.1016/j.msec.2015.03.041 25953563 

  109. 109. Kraus T. Moszner F. Fischerauer S. Fiedler M. Martinelli E. Eichler J. Witte F. Willbold E. Schinhammer M. Meischel M. Biodegradable Fe-based alloys for use in osteosynthesis: Outcome of an in vivo study after 52 weeks Acta Biomater. 2014 10 3346 3353 10.1016/j.actbio.2014.04.007 24732635 

  110. 110. Schinhammer M. Gerber I. Hanzi A.C. Uggowitzer P.J. On the cytocompatibility of biodegradable Fe-based alloys Mater. Sci. Eng. C Mater. Biol. Appl. 2013 33 782 789 10.1016/j.msec.2012.11.002 25427488 

  111. 111. Schinhammer M. Hanzi A.C. Loffler J.F. Uggowitzer P.J. Design strategy for biodegradable Fe-based alloys for medical applications Acta Biomater. 2010 6 1705 1713 10.1016/j.actbio.2009.07.039 19654056 

  112. 112. Li X. Wang Y. Du C. Yan B. Corrosion behaviors of amorphous and nanocrystalline Fe-based alloys in NaCl solution J. Nanosci. Nanotechnol. 2010 10 7226 7230 10.1166/jnn.2010.2789 21137903 

  113. 113. Mostaed E. Sikora-Jasinska M. Mostaed A. Loffredo S. Demir A.G. Previtali B. Mantovani D. Beanland R. Vedani M. Novel Zn-based alloys for biodegradable stent applications: Design, development and in vitro degradation J. Mech. Behav. Biomed. Mater. 2016 60 581 602 10.1016/j.jmbbm.2016.03.018 27062241 

  114. 114. Yao C. Wang Z. Tay S.L. Zhu T. Gao W. Effects of Mg on microstructure and corrosion properties of Zn–Mg alloy J. Alloys Compd. 2014 602 101 107 10.1016/j.jallcom.2014.03.025 

  115. 115. Bowen P.K. Drelich J. Goldman J. Zinc exhibits ideal physiological corrosion behavior for bioabsorbable stents Adv. Mater. 2013 25 2577 2582 10.1002/adma.201300226 23495090 

  116. 116. Jiao W. Li H.F. Zhao K. Bai H.Y. Wang Y.B. Zheng Y.F. Development of cazn based glassy alloys as potential biodegradable bone graft substitute J. Non-Cryst. Solids 2011 357 3830 3840 10.1016/j.jnoncrysol.2011.08.003 

  117. 117. Vojtech D. Kubasek J. Serak J. Novak P. Mechanical and corrosion properties of newly developed biodegradable Zn-based alloys for bone fixation Acta Biomater. 2011 7 3515 3522 10.1016/j.actbio.2011.05.008 21621017 

  118. 118. Saris N.E. Mervaala E. Karppanen H. Khawaja J.A. Lewenstam A. Magnesium. An update on physiological, clinical and analytical aspects Clin. Chim. Acta 2000 294 1 26 10.1016/S0009-8981(99)00258-2 10727669 

  119. 119. Ramya M. Sarwat S.G. Udhayabanu V. Subramanian S. Raj B. Ravi K.R. Role of partially amorphous structure and alloying elements on the corrosion behavior of Mg-Zn-Ca bulk metallic glass for biomedical applications Mater. Des. 2015 86 829 835 10.1016/j.matdes.2015.07.154 

  120. 120. Berglund I.S. Brar H.S. Dolgova N. Acharya A.P. Keselowsky B.G. Sarntinoranont M. Manuel M.V. Synthesis and characterization of Mg-Ca-Sr alloys for biodegradable orthopedic implant applications J. Biomed. Mater. Res. B Appl. Biomater. 2012 100 1524 1534 10.1002/jbm.b.32721 22689410 

  121. 121. Kusnierczyk K. Basista M. Recent advances in research on magnesium alloys and magnesium-calcium phosphate composites as biodegradable implant materials J. Biomater. Appl. 2016 10.1177/0885328216657271 27368753 

  122. 122. Hampp C. Angrisani N. Reifenrath J. Bormann D. Seitz J.M. Meyer-Lindenberg A. Evaluation of the biocompatibility of two magnesium alloys as degradable implant materials in comparison to titanium as non-resorbable material in the rabbit Mater. Sci. Eng. C Mater. Biol. Appl. 2013 33 317 326 10.1016/j.msec.2012.08.046 25428078 

  123. 123. Hort N. Huang Y. Fechner D. Stormer M. Blawert C. Witte F. Vogt C. Drucker H. Willumeit R. Kainer K.U. Magnesium alloys as implant materials—Principles of property design for Mg-RE alloys Acta Biomater. 2010 6 1714 1725 10.1016/j.actbio.2009.09.010 19788945 

  124. 124. Hanzi A.C. Gerber I. Schinhammer M. Loffler J.F. Uggowitzer P.J. On the in vitro and in vivo degradation performance and biological response of new biodegradable Mg-Y-Zn alloys Acta Biomater. 2010 6 1824 1833 10.1016/j.actbio.2009.10.008 19815099 

  125. 125. Ding Y. Lin J. Wen C. Zhang D. Li Y. Mechanical properties, in vitro corrosion and biocompatibility of newly developed biodegradable Mg-Zr-Sr-Ho alloys for biomedical applications Sci. Rep. 2016 6 31990 10.1038/srep31990 27553403 

  126. 126. Li H.F. Yang H.T. Zheng Y.F. Zhou F.Y. Qiu K.J. Wang X. Design and characterizations of novel biodegradable ternary Zn-based alloys with IIA nutrient alloying elements Mg, Ca and Sr Mater. Des. 2015 83 95 102 10.1016/j.matdes.2015.05.089 

  127. 127. Hermawan H. Purnama A. Dube D. Couet J. Mantovani D. Fe-Mn alloys for metallic biodegradable stents: Degradation and cell viability studies Acta Biomater. 2010 6 1852 1860 10.1016/j.actbio.2009.11.025 19941977 

  128. 128. Peuster M. Wohlsein P. Brugmann M. Ehlerding M. Seidler K. Fink C. Brauer H. Fischer A. Hausdorf G. A novel approach to temporary stenting: Degradable cardiovascular stents produced from corrodible metal-results 6–18 months after implantation into New Zealand white rabbits Heart 2001 86 563 569 10.1136/heart.86.5.563 11602554 

  129. 129. Seitz J.M. Durisin M. Goldman J. Drelich J.W. Recent advances in biodegradable metals for medical sutures: A critical review Adv. Healthc. Mater. 2015 4 1915 1936 10.1002/adhm.201500189 26172399 

  130. 130. Vojtech D. Kubasek J. Capek J. Pospisilova I. Comparative Mechanical and Corrosion Studies on Magnesium, Zinc and Iron Alloys as Biodegradable Metals Mater. Technol. 2015 49 877 882 10.17222/mit.2014.129 

  131. 131. Bowen P.K. Shearier E.R. Zhao S. Guillory R.J. Zhao F. Goldman J. Drelich J.W. Biodegradable Metals for Cardiovascular Stents: From Clinical Concerns to Recent Zn-Alloys Adv. Healthc. Mater. 2016 5 1121 1140 10.1002/adhm.201501019 27094868 

  132. 132. Sigwart U. Puel J. Mirkovitch V. Joffre F. Kappenberger L. Intravascular stents to prevent occlusion and restenosis after transluminal angioplasty N. Engl. J. Med. 1987 316 701 706 10.1056/NEJM198703193161201 2950322 

  133. 133. Hermawan H. Dube D. Mantovani D. Degradable metallic biomaterials: Design and development of Fe-Mn alloys for stents J. Biomed. Mater. Res. Part A 2010 93 1 11 10.1002/jbm.a.32224 19437432 

  134. 134. Moravej M. Mantovani D. Biodegradable metals for cardiovascular stent application: Interests and new opportunities Int. J. Mol. Sci. 2011 12 4250 4270 10.3390/ijms12074250 21845076 

  135. 135. Peeters P. Bosiers M. Verbist J. Deloose K. Heublein B. Preliminary results after application of absorbable metal stents in patients with critical limb ischemia J. Endovasc. Ther. 2005 12 1 5 10.1583/04-1349R.1 15683259 

  136. 136. Zartner P. Cesnjevar R. Singer H. Weyand M. First successful implantation of a biodegradable metal stent into the left pulmonary artery of a preterm baby Catheter. Cardiovasc. Interv. 2005 66 590 594 10.1002/ccd.20520 16206223 

  137. 137. Erbel R. Di Mario C. Bartunek J. Bonnier J. de Bruyne B. Eberli F.R. Erne P. Haude M. Heublein B. Horrigan M. Temporary scaffolding of coronary arteries with bioabsorbable magnesium stents: A prospective, non-randomised multicentre trial Lancet 2007 369 1869 1875 10.1016/S0140-6736(07)60853-8 17544767 

  138. 138. Chen Y.J. Xu Z.G. Smith C. Sankar J. Recent advances on the development of magnesium alloys for biodegradable implants Acta Biomater. 2014 10 4561 4573 10.1016/j.actbio.2014.07.005 25034646 

  139. 139. Haude M. Erbel R. Erne P. Verheye S. Degen H. Vermeersch P. Weissman N. Prati F. Bruining N. Waksman R. Safety and performance of the DRug-Eluting Absorbable Metal Scaffold (DREAMS) in patients with de novo coronary lesions: 3-year results of the prospective, multicentre, first-in-man BIOSOLVE-I trial Eurointervention 2016 12 e160 e166 10.4244/EIJ-D-15-00371 27290675 

  140. 140. Our Vascular Products Represent Deep Collaboration between Scientists, Doctors, and Patients over Decades Available online: https://www.vascular.abbott/int/products/products-home.html (accessed on 18 December 2017) 

  141. 141. Newsroom Available online: http://news.bostonscientific.com/ (accessed on 18 December 2017) 

  142. 142. Affatato S. Ruggiero A. Merola M. Logozzo S. Does metal transfer differ on retrieved Biolox Delta composites femoral heads? Surface investigation on three Biolox generations from a biotribological point of view Compos. Part B Eng. 2017 113 164 173 10.1016/j.compositesb.2017.01.026 

  143. 143. Liu X.W. Sun J.K. Yang Y.H. Zhou F.Y. Pu Z.J. Li L. Zheng Y.F. Microstructure, mechanical properties, in vitro degradation behavior and hemocompatibility of novel Zn-Mg-Sr alloys as biodegradable metals Mater. Lett. 2016 162 242 245 10.1016/j.matlet.2015.07.151 

  144. 144. Saleh M.M. Touny A.H. Al-Omair M.A. Saleh M.M. Biodegradable/biocompatible coated metal implants for orthopedic applications Bio-Med. Mater. Eng. 2016 27 87 99 10.3233/BME-161568 27175470 

  145. 145. Ding W. Opportunities and challenges for the biodegradable magnesium alloys as next-generation biomaterials Regen. Biomater. 2016 3 79 86 10.1093/rb/rbw003 27047673 

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로