$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

CNC Algorithms for Precision Machining: State of the Art Review
정밀가공을 위한 CNC 알고리즘 연구 현황

한국정밀공학회지 = Journal of the Korean Society of Precision Engineering, v.35 no.3, 2018년, pp.279 - 291  

Lee, Chan-Young ,  Kim, Seong Hyeon ,  Ha, Tae In ,  Min, Jaehong ,  Hwang, Soon-Hong ,  Min, Byung-Kwon

초록이 없습니다.

참고문헌 (69)

  1. Bi, Q., Shi, J., Wang, Y., Zhu, L., Ding, H.. Analytical curvature-continuous dual-Bezier corner transition for five-axis linear tool path. International journal of machine tools & manufacture, vol.91, 96-108.

  2. Wu, J., Liu, C., Xiong, Z., Ding, H.. Precise contour following for biaxial systems via an A-type iterative learning cross-coupled control algorithm. International journal of machine tools & manufacture, vol.93, 10-18.

  3. Wu, Jianhua, Xiong, Zhenhua, Ding, Han. Integral design of contour error model and control for biaxial system. International journal of machine tools & manufacture, vol.89, 159-169.

  4. Wan, An, Song, Libin, Xu, Jing, Liu, Shaoli, Chen, Ken. Calibration and compensation of machine tool volumetric error using a laser tracker. International journal of machine tools & manufacture, vol.124, 126-133.

  5. Shen, Jing-Chung, Lu, Qun-Zhong, Wu, Chia-Hung, Jywe, Wen-Yuh. Sliding-Mode Tracking Control With DNLRX Model-Based Friction Compensation for the Precision Stage. IEEE/ASME transactions on mechatronics : a joint publication of the IEEE Industrial Electronics Society and the ASME Dynamic Systems and Control Division, vol.19, no.2, 788-797.

  6. Sencer, B., Ishizaki, K., Shamoto, E.. High speed cornering strategy with confined contour error and vibration suppression for CNC machine tools. CIRP annals ... manufacturing technology, vol.64, no.1, 369-372.

  7. 이찬영, 민재홍, 민병권. CNC 보간기의 코너 블렌딩에 의한 경로계획오차의 한계설정. 한국정밀공학회지 = Journal of the Korean Society for Precision Engineering, vol.34, no.10, 695-700.

  8. Du, X., Huang, J., Zhu, L.M.. An Analytical Transition Algorithm for Real-time CNC Machining of Linear Tool Path. Procedia CIRP, vol.56, 344-348.

  9. Yutkowitz, S. J., “Apparatus and Method for Smooth Cornering in a Motion Control System,” US Patent, 6922606B1, 2005. 

  10. Zhao, H., Zhu, L., Ding, H.. A real-time look-ahead interpolation methodology with curvature-continuous B-spline transition scheme for CNC machining of short line segments. International journal of machine tools & manufacture, vol.65, 88-98.

  11. Tajima, S., Sencer, B.. Kinematic corner smoothing for high speed machine tools. International journal of machine tools & manufacture, vol.108, 27-43.

  12. Tajima, S., Sencer, B.. Global tool-path smoothing for CNC machine tools with uninterrupted acceleration. International journal of machine tools & manufacture, vol.121, 81-95.

  13. Yan, Y., Zhang, L., Zhang, K.. Corner Smoothing Transition Algorithm for Five-axis Linear Tool Path. Procedia CIRP, vol.56, 604-609.

  14. Beudaert, X., Lavernhe, S., Tournier, C.. 5-axis local corner rounding of linear tool path discontinuities. International journal of machine tools & manufacture, vol.73, 9-16.

  15. Shi, J., Bi, Q., Zhu, L., Wang, Y.. Corner rounding of linear five-axis tool path by dual PH curves blending. International journal of machine tools & manufacture, vol.88, 223-236.

  16. Yuen, A., Zhang, K., Altintas, Y.. Smooth trajectory generation for five-axis machine tools. International journal of machine tools & manufacture, vol.71, 11-19.

  17. Tulsyan, S., Altintas, Y.. Local toolpath smoothing for five-axis machine tools. International journal of machine tools & manufacture, vol.96, 15-26.

  18. Yang, J., Yuen, A.. An analytical local corner smoothing algorithm for five-axis CNC machining. International journal of machine tools & manufacture, vol.123, 22-35.

  19. Otsuki, T., Ogino, H., Ide, S., and Chiba, T., “Curve Interpolation Method,” US Patent, 6823234B2, 2004. 

  20. Siemens, Milling with SINUMERIK 5-Axis Machining, DocOrder No. 6FC5095-0AB10-0BP1, 2009. 

  21. Lee, An-Chen, Lin, Ming-Tzong, Pan, Yi-Ren, Lin, Wen-Yu. The feedrate scheduling of NURBS interpolator for CNC machine tools. Computer aided design, vol.43, no.6, 612-628.

  22. Jia, Z.y., Song, D.n., Ma, J.w., Hu, G.q., Su, W.w.. A NURBS interpolator with constant speed at feedrate-sensitive regions under drive and contour-error constraints. International journal of machine tools & manufacture, vol.116, 1-17.

  23. Liu, M., Huang, Y., Yin, L., Guo, J., Shao, X., Zhang, G.. Development and implementation of a NURBS interpolator with smooth feedrate scheduling for CNC machine tools. International journal of machine tools & manufacture, vol.87, 1-15.

  24. Sun, Y., Zhao, Y., Bao, Y., Guo, D.. A smooth curve evolution approach to the feedrate planning on five-axis toolpath with geometric and kinematic constraints. International journal of machine tools & manufacture, vol.97, 86-97.

  25. Rahaman, M., Seethaler, R., Yellowley, I.. A new approach to contour error control in high speed machining. International journal of machine tools & manufacture, vol.88, 42-50.

  26. Huo, Feng, Poo, Aun-Neow. Improving contouring accuracy by using generalized cross-coupled control. International journal of machine tools & manufacture, vol.63, 49-57.

  27. Xi, X.-C., Poo, A.-N., and Hong, G.-S., “Taylor Series Expansion Error Compensation for a Bi-Axial CNC Machine,” Proc. of IEEE International Conference on Systems, Man and Cybernetics, pp. 1614-1619, 2008. 

  28. Huo, F., Xi, X.-C., Poo, A.-N.. Generalized Taylor series expansion for free-form two-dimensional contour error compensation. International journal of machine tools & manufacture, vol.53, no.1, 91-99.

  29. Altintas, Y., Sencer, B.. High speed contouring control strategy for five-axis machine tools. CIRP annals ... manufacturing technology, vol.59, no.1, 417-420.

  30. Yang, J., Altintas, Y.. A generalized on-line estimation and control of five-axis contouring errors of CNC machine tools. International journal of machine tools & manufacture, vol.88, 9-23.

  31. Li, X., Zhao, H., Zhao, X., Ding, H.. Dual sliding mode contouring control with high accuracy contour error estimation for five-axis CNC machine tools. International journal of machine tools & manufacture, vol.108, 74-82.

  32. Zhang, K., Yuen, A., Altintas, Y.. Pre-compensation of contour errors in five-axis CNC machine tools. International journal of machine tools & manufacture, vol.74, 1-11.

  33. Yang, S., Ghasemi, A.H., Lu, X., Okwudire, C.E.. Pre-compensation of servo contour errors using a model predictive control framework. International journal of machine tools & manufacture, vol.98, 50-60.

  34. Zhang, Dailin, Chen, Yuanhao, Chen, Youping. Iterative pre-compensation scheme of tracking error for contouring error reduction. International journal of advanced manufacturing technology, vol.87, no.9, 3279-3288.

  35. Bui, B. D., Uchiyama, N., and Sano, S., “Nonlinear Friction Modeling and Compensation for Precision Control of a Mechanical Feed-Drive System,” Sensors and Materials, Vol. 27, No. 10, pp. 971-984, 2015. 

  36. Bui, B.D., Uchiyama, N., Simba, K.R.. Contouring control for three-axis machine tools based on nonlinear friction compensation for lead screws. International journal of machine tools & manufacture, vol.108, 95-105.

  37. Canudas de Wit, C., Olsson, H., Astrom, K.J., Lischinsky, P.. A new model for control of systems with friction. IEEE transactions on automatic control, vol.40, no.3, 419-425.

  38. Swevers, J., Al-Bender, F., Ganseman, C.G., Projogo, T.. An integrated friction model structure with improved presliding behavior for accurate friction compensation. IEEE transactions on automatic control, vol.45, no.4, 675-686.

  39. Ruderman, Michael. Tracking Control of Motor Drives Using Feedforward Friction Observer. IEEE transactions on industrial electronics : a publication of the IEEE Industrial Electronics Society, vol.61, no.7, 3727-3735.

  40. Wonkyun Lee, Chan-Young Lee, Young Hun Jeong, Byung-Kwon Min. Distributed Component Friction Model for Precision Control of a Feed Drive System. IEEE/ASME transactions on mechatronics : a joint publication of the IEEE Industrial Electronics Society and the ASME Dynamic Systems and Control Division, vol.20, no.4, 1966-1974.

  41. Tong Heng Lee, Kok Kiong Tan, Sunan Huang. Adaptive Friction Compensation With a Dynamical Friction Model. IEEE/ASME transactions on mechatronics : a joint publication of the IEEE Industrial Electronics Society and the ASME Dynamic Systems and Control Division, vol.16, no.1, 133-140.

  42. Lee, W., Lee, C.Y., Jeong, Y.H., Min, B.K.. Friction compensation controller for load varying machine tool feed drive. International journal of machine tools & manufacture, vol.96, 47-54.

  43. Lin, C.J., Lee, C.Y.. Observer-based robust controller design and realization of a gantry stage. Mechatronics : mechanics, electronics, control, vol.21, no.1, 185-203.

  44. Chih-Jer Lin, Her-Terng Yau, Yun-Cheng Tian. Identification and Compensation of Nonlinear Friction Characteristics and Precision Control for a Linear Motor Stage. IEEE/ASME transactions on mechatronics : a joint publication of the IEEE Industrial Electronics Society and the ASME Dynamic Systems and Control Division, vol.18, no.4, 1385-1396.

  45. Li, Y., Zhao, W., Lan, S., Ni, J., Wu, W., Lu, B.. A review on spindle thermal error compensation in machine tools. International journal of machine tools & manufacture, vol.95, 20-38.

  46. Altintas, Y., Verl, A., Brecher, C., Uriarte, L., Pritschow, G.. Machine tool feed drives. CIRP annals ... manufacturing technology, vol.60, no.2, 779-796.

  47. Thiem, Xaver, Kauschinger, Bernd, Ihlenfeldt, Steffen. Structure Model Based Correction of Thermally Induced Motion Errors of Machine Tools. Procedia manufacturing, vol.14, 128-135.

  48. Li, Tie-jun, Zhao, Chun-yu, Zhang, Yi-min. Adaptive real-time model on thermal error of ball screw feed drive systems of CNC machine tools. International journal of advanced manufacturing technology, vol.94, no.9, 3853-3861.

  49. Li, Yang, Zhao, Wanhua, Wu, Wenwu, Lu, Bingheng, Chen, Yubao. Thermal error modeling of the spindle based on multiple variables for the precision machine tool. International journal of advanced manufacturing technology, vol.72, no.9, 1415-1427.

  50. Shi, H., Ma, C., Yang, J., Zhao, L., Mei, X., Gong, G.. Investigation into effect of thermal expansion on thermally induced error of ball screw feed drive system of precision machine tools. International journal of machine tools & manufacture, vol.97, 60-71.

  51. Feng, W., Li, Z., Gu, Q., Yang, J.. Thermally induced positioning error modelling and compensation based on thermal characteristic analysis. International journal of machine tools & manufacture, vol.93, 26-36.

  52. Huang, Yanqun, Zhang, Jie, Li, Xu, Tian, Liangjv. Thermal error modeling by integrating GA and BP algorithms for the high-speed spindle. International journal of advanced manufacturing technology, vol.71, no.9, 1669-1675.

  53. Abdulshahed, Ali M., Longstaff, Andrew P., Fletcher, Simon. The application of ANFIS prediction models for thermal error compensation on CNC machine tools. Applied soft computing, vol.27, 158-168.

  54. Liu, K., Sun, M., Zhu, T., Wu, Y., Liu, Y.. Modeling and compensation for spindle's radial thermal drift error on a vertical machining center. International journal of machine tools & manufacture, vol.105, 58-67.

  55. Tan, Feng, Yin, Ming, Wang, Lin, Yin, Guofu. Spindle thermal error robust modeling using LASSO and LS-SVM. International journal of advanced manufacturing technology, vol.94, no.5, 2861-2874.

  56. Miao, En-Ming, Gong, Ya-Yun, Niu, Peng-Cheng, Ji, Chang-Zhu, Chen, Hai-Dong. Robustness of thermal error compensation modeling models of CNC machine tools. International journal of advanced manufacturing technology, vol.69, no.9, 2593-2603.

  57. Miao, E., Liu, Y., Liu, H., Gao, Z., Li, W.. Study on the effects of changes in temperature-sensitive points on thermal error compensation model for CNC machine tool. International journal of machine tools & manufacture, vol.97, 50-59.

  58. Liu, H., Miao, E.M., Wei, X.Y., Zhuang, X.D.. Robust modeling method for thermal error of CNC machine tools based on ridge regression algorithm. International journal of machine tools & manufacture, vol.113, 35-48.

  59. Miller, J.E., Longstaff, A.P., Parkinson, S., Fletcher, S.. Improved machine tool linear axis calibration through continuous motion data capture. Precision engineering, vol.47, 249-260.

  60. Feng, W.L., Yao, X.D., Azamat, A., Yang, J.G.. Straightness error compensation for large CNC gantry type milling centers based on B-spline curves modeling. International journal of machine tools & manufacture, vol.88, 165-174.

  61. Zha, J., Xue, F., Chen, Y.. Straightness error modeling and compensation for gantry type open hydrostatic guideways in grinding machine. International journal of machine tools & manufacture, vol.112, 1-6.

  62. Zhenjiu, Z., Mingjun, R., Mingjun, L., xinmin, W., yuanbo, C.. A Modified Sequential Multilateration Scheme and its Application in Geometric Error Measurement of Rotary Axis. Procedia CIRP, vol.27, 313-317.

  63. Zhu, S., Ding, G., Qin, S., Lei, J., Zhuang, L., Yan, K.. Integrated geometric error modeling, identification and compensation of CNC machine tools. International journal of machine tools & manufacture, vol.52, no.1, 24-29.

  64. He, Z., Fu, J., Zhang, L., Yao, X.. A new error measurement method to identify all six error parameters of a rotational axis of a machine tool. International journal of machine tools & manufacture, vol.88, 1-8.

  65. Chen, D., Dong, L., Bian, Y., Fan, J.. Prediction and identification of rotary axes error of non-orthogonal five-axis machine tool. International journal of machine tools & manufacture, vol.94, 74-87.

  66. Zhong, Lei, Bi, Qingzhen, Wang, Yuhan. Volumetric accuracy evaluation for five-axis machine tools by modeling spherical deviation based on double ball-bar kinematic test. International journal of machine tools & manufacture, vol.122, 106-119.

  67. Xia, Hong-jian, Peng, Wei-chao, Ouyang, Xiang-bo, Chen, Xin-du, Wang, Su-juan, Chen, Xin. Identification of geometric errors of rotary axis on multi-axis machine tool based on kinematic analysis method using double ball bar. International journal of machine tools & manufacture, vol.122, 161-175.

  68. Zhong, Gaoyan, Wang, Chaoqun, Yang, Shoufeng, Zheng, Enlai, Ge, Yanyan. Position geometric error modeling, identification and compensation for large 5-axis machining center prototype. International journal of machine tools & manufacture, vol.89, 142-150.

  69. Xiang, S., Altintas, Y.. Modeling and compensation of volumetric errors for five-axis machine tools. International journal of machine tools & manufacture, vol.101, 65-78.

LOADING...
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로