$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] A Metallographic Review of 3D Printing/Additive Manufacturing of Metal and Alloy Products and Components 원문보기

Metallography, microstructure, and analysis, v.7 no.2, 2018년, pp.103 - 132  

Murr, L. E.

초록이 없습니다.

참고문헌 (136)

  1. Int. Mater. Rev. DD Gu 57 3 133 2012 10.1179/1743280411Y.0000000014 D.D. Gu, W. Meiners, K. Wissenbach, R. Poprawe, Laser additive manufacturing of metallic components: materials, processes and mechanisms. Int. Mater. Rev. 57(3), 133-164 (2012) 

  2. Int. J. Prod. Econ. S Mellor 149 194 2014 10.1016/j.ijpe.2013.07.008 S. Mellor, L. Hao, D. Zhang, Additive manufacturing: a framework for implementation. Int. J. Prod. Econ. 149, 194-201 (2014) 

  3. JOM Y Zhai 6 808 2014 10.1007/s11837-014-0886-2 Y. Zhai, D.A. Lados, J.I. Lagoy, Additive manufacturing: making imagination the major limitation. JOM 6, 808-816 (2014) 

  4. J. Mater. Eng. Perform. WE Frazier 23 1917 2014 10.1007/s11665-014-0958-z W.E. Frazier, Metal additive manufacturing: a review. J. Mater. Eng. Perform. 23, 1917-1928 (2014) 

  5. Adv. Manuf. Technol. D Ding 81 1 465 2015 10.1007/s00170-015-7077-3 D. Ding, Z. Pan, D. Caluri, H. Li, Wire-feed additive manufacturing of metal components: technologies, developments and future interests. Adv. Manuf. Technol. 81(1), 465-481 (2015) 

  6. Procedia CIRP C Klahn 36 230 2015 10.1016/j.procir.2015.01.082 C. Klahn, B. Leutenecker, M. Mebold, Design strategies for the process of additive manufacturing. Procedia CIRP 36, 230-235 (2015) 

  7. Prog. Mater Sci. EO Olakanmi 74 401 2015 10.1016/j.pmatsci.2015.03.002 E.O. Olakanmi, R.F. Cochrane, K.W. Dalgarno, A review on selective laser sintering/melting (SLS/SLM) of aluminum alloy powders: processing, microstructure and properties. Prog. Mater Sci. 74, 401-477 (2015) 

  8. MRS Bull. S Das 41 10 729 2016 10.1557/mrs.2016.217 S. Das, D.C. Dowrell, S.S. Babu, Metallic materials for 3D printing. MRS Bull. 41(10), 729-741 (2016) 

  9. Ann. Rev. Mater. Res. DC Bourell 46 1 2016 10.1146/annurev-matsci-070115-031606 D.C. Bourell, Perspectives on additive manufacturing. Ann. Rev. Mater. Res. 46, 1-18 (2016) 

  10. MRS Bull. LE Murr 41 752 2016 10.1557/mrs.2016.210 L.E. Murr, S.J. Li, Electron beam manufacturing of high-temperature metals. MRS Bull. 41, 752-757 (2016) 

  11. J. Mater. Sci. Technol. LE Murr 32 987 2016 10.1016/j.jmst.2016.08.011 L.E. Murr, Frontiers of 3D printing/additive manufacturing: from human organs to aircraft fabrication. J. Mater. Sci. Technol. 32, 987-995 (2016) 

  12. J. Clean. Prod. S Ford 137 1573 2016 10.1016/j.jclepro.2016.04.150 S. Ford, M. Despeisse, Additive manufacturing and sustainability: an exploratory study of the advantages and challenges. J. Clean. Prod. 137, 1573-1587 (2016) 

  13. Acta Mater. D Herzog 117 371 2016 10.1016/j.actamat.2016.07.019 D. Herzog, V. Seyda, E. Wycisk, C. Emmelmann, Additive manufacturing of metals. Acta Mater. 117, 371-392 (2016) 

  14. Int. Mater. Rev. WJ Sames 61 5 315 2016 10.1080/09506608.2015.1116649 W.J. Sames, F.A. List, S. Pannela, R.R. Dehoff, S.S. Babu, The metallurgy and processing science of metal additive manufacturing. Int. Mater. Rev. 61(5), 315-360 (2016) 

  15. Int. J. Metrol. Qual. Eng. A Thomson 8 17 2017 10.1051/ijmqe/2017015 A. Thomson, D. McNally, I. Maskery, R.M. Leach, X-ray computed tomography and additive manufacturing in medicine: a review. Int. J. Metrol. Qual. Eng. 8, 17-42 (2017) 

  16. 2017 Additive manufacturing handbook: product development for the defense industry A.B. Badiru, V.V. Valencia, D. Liu (eds.), Additive manufacturing handbook: product development for the defense industry (CRC Press/Taylor & Francis Group, Boca Raton, 2017) 

  17. MRS Bull. NT Abonlkhair 42 4 311 2017 10.1557/mrs.2017.63 N.T. Abonlkhair, N.M. Everitt, I. Maskery, I. Ashcroft, Selective laser melting of aluminum alloys. MRS Bull. 42(4), 311-319 (2017) 

  18. 2017 Metallic Foam Bone C. Wen (ed.), Metallic Foam Bone (Woodhead Publishing/Elsevier, Duxford, 2017) 

  19. J. Mater. Res. Technol. LE Murr 6 1 77 2017 10.1016/j.jmrt.2016.11.002 L.E. Murr, W.L. Johnson, 3D metal droplet printing development and advanced materials additive manufacturing. J. Mater. Res. Technol. 6(1), 77-89 (2017) 

  20. T. Wohlers, T. Caffrey, Additive MANUFACTURING: THE state of the industry. Adv. Manuf. Org (Soc. Manuf. Eng. Magazine), May, 45-52 (2016) 

  21. Add. Manuf. LE Murr 5 40 2015 L.E. Murr, Metallurgy of additive manufacturing: examples from electron beam melting. Add. Manuf. 5, 40-53 (2015) 

  22. 10.1007/978-3-319-01815-7 L E. Murr, Handbook of Materials Structures, Properties, Processing and Performance Vols. 1 & 2, Springer, Heidelberg (2015) 

  23. Metallog. Microstruct. Anal. LE Murr 1 45 2012 10.1007/s13632-011-0002-8 L.E. Murr, E. Martinez, S.M. Gaytan, D.A. Ramirez, Contributions of light microscopy to contemporary materials characterization: The new directional solidification. Metallog. Microstruct. Anal. 1, 45-55 (2012) 

  24. M. Orme, E. P. Muntz, Method and apparatus for droplet steam manufacturing. U.S. Patent Publication No. US5226948A; publication date: July 13, (1990) 

  25. W. A. Harkness, J. H. Goldschmid, Free-form spatial 3D printing using part levitation. U.S. patent publication No. US2016/0031156Al, published Feb. 4, (2016) 

  26. W.L. Johnson, L.E. Murr, M. Halpin, P. Frantz, Additive manufacturing systems and methods. U.S. Provisional Patent Application No. 62308821, March 15, (2016) 

  27. GF Deyer 2005 Surface phenomena in fusion welding processes G.F. Deyer, D. Deyer, Surface phenomena in fusion welding processes (CRC Press/Taylor & Francis Group, London, 2005) 

  28. H Shultz 1993 Electron beam welding H. Shultz, Electron beam welding (Woodhead Publishing/The Welding Institute, Cambridge, 1993) 

  29. Optical Laser Technol. JW Hill 6 6 276 1974 10.1016/0030-3992(74)90009-7 J.W. Hill, M.J. Lee, I.J. Spalding, Surface treatments by laser. Optical Laser Technol. 6(6), 276-278 (1974) 

  30. J. Laser Applic. R Vilar 11 64 1999 10.2351/1.521888 R. Vilar, Laser cladding. J. Laser Applic. 11, 64-80 (1999) 

  31. J. Appl. Photo. Eng. AJ Herbert 8 4 185 1982 A.J. Herbert, Solid object generation. J. Appl. Photo. Eng. 8(4), 185-188 (1982) 

  32. Mech. Eng. S Ashley 113 4 34 1991 S. Ashley, Rapid prototyping systems. Mech. Eng. 113(4), 34-43 (1991) 

  33. J. Jpn. Soc. Powder Metal. DC Bourell 50 11 981 2003 10.2497/jjspm.50.981 D.C. Bourell, J.J. Beaman, Chronology and current processes for freeform fabrication. J. Jpn. Soc. Powder Metal. 50(11), 981-991 (2003) 

  34. Proc. SPIE DM Keicher 2293 91 1997 10.1117/12.270018 D.M. Keicher, J.E. Smugeresky, J.A. Romero, M.L. Griffith, L.D. Harwell, Using laser engineered net shaping (LENS) process to produce complex components from a CAD solid model. Proc. SPIE 2293, 91-97 (1997) 

  35. JOM W Hofmeister 53 9 30 2001 10.1007/s11837-001-0066-z W. Hofmeister, M. Griffith, Solidification in direct metal deposition by LENS processing. JOM 53(9), 30-34 (2001) 

  36. Int. J. Adv. Manuf. Technol. P Ding 81 1 465 2015 10.1007/s00170-015-7077-3 P. Ding, Z. Pan, D. Caluri, H. Li, Wire-feed additive developments and future interests. Int. J. Adv. Manuf. Technol. 81(1), 465-480 (2015) 

  37. Metall. Mater. Trans. A A Basak 47 8 3845 2016 10.1007/s11661-016-3571-y A. Basak, R. Acharya, S. Das, Additive manufacturing of single-crystal Superalloy CMSX-4 through scanning laser epitaxy: computational, modeling experimental process development and process parameter optimization. Metall. Mater. Trans. A 47(8), 3845-3859 (2016) 

  38. Ann. Rev. Mater. Res. A Basak 46 125 2016 10.1146/annurev-matsci-070115-031728 A. Basak, S. Das, Epitaxy and microstructure evolution in metal additive manufacturing. Ann. Rev. Mater. Res. 46, 125-149 (2016) 

  39. Proc. CIRP S Meteyer 15 19 2014 10.1016/j.procir.2014.06.030 S. Meteyer, X. Xu, N. Perry, Y.F. Zhao, Energy and material flow analysis of binder-jetting additive manufacturing processes. Proc. CIRP 15, 19-25 (2014) 

  40. T Wohlers 2014 History of additive manufacturing. Wohlers Report T. Wohlers, T. Garnet, History of additive manufacturing. Wohlers Report (Wohlers Associates Co, Fort Collins, 2014) 

  41. J. Appl. Phys. HE Cline 49 3895 1997 H.E. Cline, T.R. Anthony, Heat treating and melting material with a scanning laser beam or electron beam. J. Appl. Phys. 49, 3895-3900 (1997) 

  42. R. Frigola, O.A. Harrysson, T.J. Horn, H.A. West, R.L. Aman, J.M. Rigsbee, D.A. Ramirez, L.E. Murr, F. Medina, R.B. Wicker, E. Rodriguez, Fabricating copper components with electron beam melting. Adv. Mater. Processes July, 20-24, (2014) 

  43. J. Mater. Res. Technol. LE Murr 1 3 167 2012 10.1016/S2238-7854(12)70029-7 L.E. Murr, E. Martinez, J. Hernandez, S. Collins, K.N. Amato, S.M. Gaytan, P.W. Shindo, Microstructures and properties of 17-4 pH stainless steel fabricated by selective laser melting. J. Mater. Res. Technol. 1(3), 167-177 (2012) 

  44. Mater. Technol. SM Gaytan 24 3 180 2009 10.1179/106678509X12475882446133 S.M. Gaytan, L.E. Murr, F. Medina, E. Martinez, M.I. Lopez, R.B. Wicker, Advanced metal powder based manufacturing of complex components by electron beam melting. Mater. Technol. 24(3), 180-190 (2009) 

  45. CIRP Ann. Manuf. Technol. JP Kruth 56 730 2007 10.1016/j.cirp.2007.10.004 J.P. Kruth, G. Levy, F. Klocke, T.H.C. Childs, Consolidation phenomena in laser and powder bed based layered manufacturing. CIRP Ann. Manuf. Technol. 56, 730-759 (2007) 

  46. Mater. Dev. N Read 65 417 2015 10.1016/j.matdes.2014.09.044 N. Read, W. Wang, K. Essa, M.M. Attallah, Selective laser melting of AlSi10 Mg alloy: process optimization and mechanical properties development. Mater. Dev. 65, 417-424 (2015) 

  47. J. Heat Transfer TD Bennett 119 3 589 1997 10.1115/1.2824146 T.D. Bennett, D.J. Krajnovich, C.P. Grigorspoulos, P. Baumgart, A.C. Tam, Marangori Mechanism in pulsed laser texturing of magnetic hand discs. J. Heat Transfer 119(3), 589-596 (1997) 

  48. 10.1590/1516-1439.322214 Y. Han, W. Lu, T. Jarvis, J. Shurrinton, X. Wu, Investigation on other microstructure of direct laser additive manufacturing of Ti-6Al-4V alloy. Mater. Res. 18(1), 8 pp (2015) 

  49. Appl. Surface Sci. I Yadroitsev 253 19 8064 2007 10.1016/j.apsusc.2007.02.088 I. Yadroitsev, P. Bertrand, I. Smurov, Parametric analysis of the selective laser melting process. Appl. Surface Sci. 253(19), 8064-8069 (2007) 

  50. J. Alloys Compounds CL Qiu 629 351 2015 10.1016/j.jallcom.2014.12.234 C.L. Qiu, G.A. Ravi, C. Danu, A. Ranson, S. Dilworth, M.M. Attallah, Fabrication of large Ti-6Al-4V structures by direct laser deposition. J. Alloys Compounds 629, 351-361 (2015) 

  51. M Yan 77 2015 Sintering Techniques of Materials M. Yan, P. Yu, An overview of densification, microstructure and mechanical property of additive manufactured Ti-6Al-4V-comparison among selective laser melting, electron beam melting and laser metal deposition and selective laser sintering with conventional powder. Chap. 5, in Sintering Techniques of Materials, ed. by A. Lakshmanan (Rijeka, Croatia, Intech, 2015), pp. 77-106 

  52. F. Medina, L.E. Murr, R.W. Wicker, S.M. Gaytan, Reticulated mesh arrays and dissimilar array monoliths by additive layered manufacturing using electron and laser beam melting, U.S. Patent filed May 10, 2010 (publication U.S. 2010/0291401A1; Nov. 18, 2010. Patent No. US 8,828,311B2, Sept. 9, (2014) 

  53. D. A. Bales, A. Klucha, G.M. Dolansky, Uber-cooled turbine section component made by additive manufacturing. U.S. Patent Application No. US 20140169981A1, June 14, (2014) 

  54. G. Das, L. Cerratescu, D.M. Shah, Method for preparation of a Superalloy having a crystallographic texture controlled microstructure by electron beam melting. U.S. Patent Publication No. EP3015706A2-Sept. 14, 2016; filing date Oct. 28, (2014) 

  55. Mater. Des. A Hinojos 94 17 2016 10.1016/j.matdes.2016.01.041 A. Hinojos, J. Mireles, A. Reichardt, P. Frigola, P. Hosemann, L.E. Murr, R.W. Wicker, Joining Inconel 718 and 316 stainless steel using electron beam melting additive manufacturing technology. Mater. Des. 94, 17-27 (2016) 

  56. Metall. Mater. Trans. A LE Murr 42A 3491 2011 10.1007/s11661-011-0748-2 L.E. Murr, E. Martinez, S.M. Gaytan, D.A. Ramirez, B.I. Machado, P.W. Shindo, J.L. Martinez, F. Medina, J. Wooten, D. Ciscel, U. Ackelid, R.B. Wicker, Microstructural architecture, microstructures, and mechanical properties of a nickel-base Superalloy fabricated by electron beam melting. Metall. Mater. Trans. A 42A, 3491-3508 (2011) 

  57. Proc. Inst. Mech. Eng. G J. Aerosp. Eng. A Uriando 229 11 2132 2015 10.1177/0954410014568797 A. Uriando, M. Esperm-Miguez, S. Perinpanayagam, The present and future of additive manufacturing in the aerospace sector: a review of important aspects. Proc. Inst. Mech. Eng. G J. Aerosp. Eng. 229(11), 2132-2147 (2015) 

  58. JOM M Seifi 69 3 439 2017 10.1007/s11837-017-2265-2 M. Seifi, M. Gorelik, J. Waller, N. Hrabe, N. Shamsaci, S. Dariewicz, J.J. Lewandowski, Progress towards metal additive manufacturing standardization to support qualification and certification. JOM 69(3), 439-455 (2017) 

  59. LE Murr 1975 Interfacial Phenomena in Metals and Alloys L.E. Murr, Interfacial Phenomena in Metals and Alloys (Addison-Wesley, Reading, 1975) 

  60. Rev. Sci. Instrum. M Orme 58 279 1978 10.1063/1.1139322 M. Orme, E.P. Muntz, A new technique for producing highly uniform droplet stream over an extended range of disturbance wave number. Rev. Sci. Instrum. 58, 279-284 (1978) 

  61. Phys. Fluids M Orme 312 2936 1991 10.1063/1.857836 M. Orme, On the genesis of droplet stream microspeed dispersions. Phys. Fluids 312, 2936-2947 (1991) 

  62. ILASS J. Atom. Sprays M Orme 6 305 1996 10.1615/AtomizSpr.v6.i3.40 M. Orme, C. Huang, J. Courter, Precision droplet based manufacturing and material synthesis: fluid dynamics and thermal control issues. ILASS J. Atom. Sprays 6, 305-329 (1996) 

  63. Alum. Trans. M Orme 3 1 95 2000 M. Orme, Q. Liu, R. Smith, Molten aluminum micro-droplet formation and deposition for advanced manufacturing applications. Alum. Trans. 3(1), 95-103 (2000) 

  64. Trans. ASME AA Tseng 132 74 2001 A.A. Tseng, M.H. Lee, B. Zhao, Design and generation of a droplet deposition system for freeform fabrication of metal parts. Trans. ASME 132, 74-84 (2001) 

  65. J. Mater. Process. Technol. SX Cheng 159 3 295 2005 10.1016/j.jmatprotec.2004.05.016 S.X. Cheng, T. Li, S. Chandra, Producing molten metal droplets with a pneumatic droplet-on-demand generator. J. Mater. Process. Technol. 159(3), 295-302 (2005) 

  66. Int. J. Adv. Manuf. Technol. X-S Jiang 49 5 535 2010 10.1007/s00170-009-2403-2 X.-S. Jiang, L.-H. Qi, J. Luo, H. Huang, J.-M. Zhou, Research on accurate droplet generation for microdroplet deposition manufacture. Int. J. Adv. Manuf. Technol. 49(5), 535-541 (2010) 

  67. Adv. Mater. Rev. Y-P Chao 940 311 2014 Y-P. Chao, 3D printing and manufacture micro-channel structure by metal micro-droplet-on-demand deposition. Adv. Mater. Rev. 940, 311-315 (2014) 

  68. Langmuir JB Lee 32 5 1279 2016 10.1021/acs.langmuir.5b03848 J.B. Lee, D. Derome, A. Dolatabadi, J. Carmeliet, Energy budget of liquid drop impact at maximum spreading: Numerical simulations and experiments. Langmuir 32(5), 1279-1288 (2016) 

  69. 10.1063/1.4955114 B. Ballinger, R. S. Abbari, Excitation and dynamics of liquid tin micrometer droplet generation. Phys. Fluids 28, 074105 (1-20) (2016) 

  70. Procedia Manuf. T Wang 10 968 2017 10.1016/j.promfg.2017.07.088 T. Wang, T.-H. Kusok, C. Zhou, In-situ droplet inspection and control system for liquid metal jet 3D printing process. Procedia Manuf. 10, 968-991 (2017) 

  71. Acta Mater. DA Ramirez 59 4088 2011 10.1016/j.actamat.2011.03.033 D.A. Ramirez, L.E. Murr, E. Martinez, D.H. Hernandez, J.L. Martinez, B.I. Machado, F. Medina, R.B. Wicker, P. Frigola, Novel precipitate microstructural architecture developed in the fabrication of solid copper components by additive manufacturing using electron beam melting. Acta Mater. 59, 4088-4099 (2011) 

  72. HE Collins 1968 Superalloys H.E. Collins, Superalloys (ASM International, Metals Park, 1968) 

  73. 1992 Superalloys 1992 S.D. Antolovich, R.W. Stasrad, R.A. Mackay, D.L. Anton, T. Khan, R.D. Kissinger, D.L. Klanstrom (eds.), Superalloys 1992 (The Minerals, Metals and Materials Society (TMS), Warrendale, 1992) 

  74. RC Reed 2008 The superalloys: fundamentals and applications R.C. Reed, The superalloys: fundamentals and applications (Cambridge Univ. Press, Cambridge, 2008) 

  75. D. F. Poulonis, J. M. Oblak, D. S. Duvall, D.S. Precipitation in nickel base alloy 718. ASM Trans. Quart. 62, C11-C22 (1969) 

  76. J. de Physique BH Kear 12 35 C1 1974 B.H. Kear, J.M. Oblak, Deformation modes in γ′ precipitation hardened nickel-base alloys. J. de Physique 12(35), C1-C35 (1974) 

  77. M Durand-Charre 1977 The microstructure of superalloys M. Durand-Charre, The microstructure of superalloys (Gordon & Breach, Amsterdam, 1977) 

  78. Metall. Mater. Trans. B GR Leverant B4 1 355 1973 10.1007/BF02649637 G.R. Leverant, B.H. Kear, J.M. Oblak, Creep of precipitation-hardened, nickel-base alloy single crystals at high temperature. Metall. Mater. Trans. B B4(1), 355-362 (1973) 

  79. Metall. Mater. Trans. A SM Gaytan 41A 3216 2010 10.1007/s11661-010-0388-y S.M. Gaytan, L.E. Murr, E. Martinez, J.L. Martinez, B.I. Machado, D.A. Ramirez, Comparison of microstructures and mechanical properties of solid and mesh cobalt-base alloy prototypes fabricated by electron beam melting. Metall. Mater. Trans. A 41A, 3216-3227 (2010) 

  80. 10.1016/B978-0-08-096532-1.01004-9 L.E. Murr, S.M. Gaytan, in Electron beam melting. ed. by S. Masoad. Comprehensive materials processing, vol. 10 (Elsevier Ltd., London, 2010), pp. 135-161 

  81. Mater. Sci. Forum A Niang 636-637 517 2010 10.4028/www.scientific.net/MSF.636-637.517 A. Niang, J. Huez, J. Lacase, B. Viguier, Cauterizing precipitation defects in nickel base 718 alloy. Mater. Sci. Forum 636-637, 517-522 (2010) 

  82. Acta Mater. KN Amato 60 2229 2012 10.1016/j.actamat.2011.12.032 K.N. Amato, S.M. Gaytan, L.E. Murr, E. Martinez, P.W. Shindo, J. Hernandez, Microstructures and mechanical behavior for Inconel 718 fabricated by selective laser melting. Acta Mater. 60, 2229-2239 (2012) 

  83. Mater. Sci. Eng. A A Strondl 480A 138 2008 10.1016/j.msea.2007.07.012 A. Strondl, R. Fischer, G. Frommeyer, A. Schneider, Investigations of MX and γ/γ′ precipitates in the nickel-based Superalloy 718 produced by electron beam melting. Mater. Sci. Eng. A 480A, 138-147 (2008) 

  84. Acta Mater. T Murakumo 52 12 3737 2004 10.1016/j.actamat.2004.04.028 T. Murakumo, T. Kobayashi, Y. Koizumi, H. Harada, Creep behavior of Ni-base single-crystal superalloys with various gamma prime volume fraction. Acta Mater. 52(12), 3737-3744 (2004) 

  85. J. Propulsion Power TM Pollock 22 2 361 2006 10.2514/1.18239 T.M. Pollock, S.J. Tin, Nickel-based Superalloys for advanced turbine engines: chemistry, microstructure and properties. J. Propulsion Power 22(2), 361-374 (2006) 

  86. J. Aeorspace Lab P Caron 3 1 2001 P. Caron, O.J. Lavigne, Recent studies at Oneva on Superalloys for single crystal turbine blades. J. Aeorspace Lab 3, 1-14 (2001) 

  87. Acta Mater. LE Murr 61 11 4289 2013 10.1016/j.actamat.2013.04.002 L.E. Murr, E. Martinez, X.M. Pan, S.M. Gaytan, J.A. Castro, C.A. Terrazas, F. Medina, R.B. Wicker, D.H. Abbott, Microstructures of Rene 142 nickel-based Superalloy fabricated by electron beam melting. Acta Mater. 61(11), 4289-4296 (2013) 

  88. Dyn. Theory. Phys. Stat. Sol. B R Gevers 4 383 1964 10.1002/pssb.19640040216 R. Gevers, P. Delavignette, H. Blank, J. Van Landuyt, S. Amelinckx, Electron microscopy transmission images of coherent domain boundaries I. Dyn. Theory. Phys. Stat. Sol. B 4, 383-410 (1964) 

  89. Dyn. Theory. Phys. Stat. Sol. B R Gevers 5 3 595 1964 10.1002/pssb.19640050317 R. Gevers, P. Delavignette, H. Blank, J. Van Landuyt, S. Amelinckx. Electron microscope transmission images of coherent domain boundaries II. Observations. Phys. Stat. Solid 5(3), 595-633 (1964) 

  90. J. Mater. Res. Technol. LE Murr 2 4 76 2013 10.1016/j.jmrt.2013.10.002 L.E. Murr, E. Martinez, X.M. Pan, C.M. Wang, J. Yang, S.J. Li, F. Yang, Q. Xu, J. Hernandez, W. Zhu, S.M. Gaytan, F. Medina, R.B. Wicker, Properties of solid and reticulated mesh components of pure iron fabricated by electron beam melting. J. Mater. Res. Technol. 2(4), 76-88 (2013) 

  91. Metallog. Microstruct. Anal. E Martinez 3 2 183 2013 10.1007/s13632-013-0073-9 E. Martinez, L.E. Murr, J. Hernandez, X.M. Pan, K.N. Amato, P. Frigola, C. Terrazas, S.M. Gaytan, E. Rodriguez, F. Medina, R.B. Wicker, Microstructures of niobium components fabricated by electron beam melting. Metallog. Microstruct. Anal. 3(2), 183-189 (2013) 

  92. Mater. Sci. Forum S Natividad 638-642 638-642 2351 2010 10.4028/www.scientific.net/MSF.638-642.2351 S. Natividad, A. Acosta, K.N. Amato, J. Ventura, B. Portillo, S.K. Varma, Heat treatment and oxidation characteristics of Nb-20Mo-15Si-5B-20 (Cr, Ti) alloys from 700 to 1400 C. Mater. Sci. Forum 638-642(638-642), 2351-2356 (2010) 

  93. Metall. Mater. Trans. A B Portillo 43A 147 2012 10.1007/s11661-011-0861-2 B. Portillo, S.K. Varma, Oxidation behavior of Nb-20Mo-15Si-25Cr and Nb-20Mo-15Si-25Cr-5B alloys. Metall. Mater. Trans. A 43A, 147-154 (2012) 

  94. Mater. Sci. Eng. H Conrad 2 157 1967 10.1016/0025-5416(67)90032-8 H. Conrad, S. Feuerstein, L. Rice, Effects of grain size on the dislocation density and flow stress of niobium. Mater. Sci. Eng. 2, 157-168 (1967) 

  95. J. Mater. Process. Technol. E Louvis 211 275 2011 10.1016/j.jmatprotec.2010.09.019 E. Louvis, P. Fox, C.J. Sutcliffe, Selective laser melting of aluminum components. J. Mater. Process. Technol. 211, 275-284 (2011) 

  96. 10.1155/2007/34737 T. Mahale, D. Cormier, O. Harrysson, K. Ervin, Advances in electron beam melting of aluminum alloys. Proc. Solid Freeform Fabrication (SFF) Symp. pp. 312-324 (2007) Univ Texas, Austin, TX 

  97. Materials F Tresisan 10 1 76 2017 10.3390/ma10010076 F. Tresisan, F. Calignano M. Lorusso, J. Pakkanen, A. Arersa, E. P. Ambrosia, M. Lombardi, P. Fino, D. Manpreb, On the selective laser melting (SLM) of the Al-Si-Mg alloy: process, microstructure and mechanical properties. Materials 10(1), 76-90 (2017) 

  98. Mater. Sci. Eng. A L Brice 648A 9 2015 10.1016/j.msea.2015.08.088 L. Brice, R. Shenry, M. Kral, K. Buchannan, Precipitation behavior of aluminum alloy 2139 fabricated by additive manufacturing. Mater. Sci. Eng. A 648A, 9-14 (2015) 

  99. MRS Bull. NT Abrulkhair 42 4 311 2017 10.1557/mrs.2017.63 N.T. Abrulkhair, N.M. Everitt, I. Maskery, I. Ashcroft, Selective laser melting of aluminum alloys. MRS Bull. 42(4), 311-319 (2017) 

  100. 10.1016/0079-6425(63)90010-0 A. Kelly, R.B. Nicholson, in Precipitation Hardening, ed by B. Chalmers, Progress in Materials Science, vol. 10, No. 3, (Pergamon Press, New York, 1963) 

  101. J. Mater. Sci. LE Murr 33 1243 1998 10.1023/A:1004385928163 L.E. Murr, G. Liu, J.C. McClure, A TEM study of precipitation and related microstructures in friction-stir welded 6061 aluminum. J. Mater. Sci. 33, 1243-1251 (1998) 

  102. M. H. Jacobs, The nucleation and growth of precipitates in aluminum alloys. Ph.D. Thesis (Physics Dept., Univ. of Warwick, 1969) 

  103. Int. Mater. Rev. SC Wang 51 193 2015 S.C. Wang, M.J. Starink, Precipitates and intermetallic phases in precipitation hardening Al-Cu-Mg(Li) based alloys. Int. Mater. Rev. 51, 193-215 (2015) 

  104. LB Ber 2015 Heat Treatment of Aluminum Alloy L.B. Ber, N. Kolobnev, E.-N. Kablov, Heat Treatment of Aluminum Alloy (CRC Press/Taylor & Francis, Boca Raton, 2015) 

  105. Exp. Mech. KA Bakke 1 141 1992 K.A. Bakke, The surface evolver. Exp. Mech. 1, 141-165 (1992) 

  106. J. Mech. Behav. Biomed. Mater. LE Murr 4 7 396 2011 10.1016/j.jmbbm.2011.05.010 L.E. Murr, K.N. Amato, S.J. Li, Y.-X. Tian, X.-Y. Cheng, S.M. Gaytan, E. Martinez, P.W. Shindo, F. Medina, R.B. Wicker, Microstructure and mechanical properties of open-cellular biomaterials prototypes for total knee replacement implants fabricated by electron beam melting. J. Mech. Behav. Biomed. Mater. 4(7), 396-1411 (2011) 

  107. J. Mech. Behav. Biomed. Mater. LE Murr 76 164 2017 10.1016/j.jmbbm.2017.02.019 L.E. Murr, Open cellular metal implant design and fabrication for biomechanical compatibility with bone using electron beam melting. J. Mech. Behav. Biomed. Mater. 76, 164-177 (2017) 

  108. Acta Biomater. P Heinl 4 1536 2008 10.1016/j.actbio.2008.03.013 P. Heinl, L. Muller, C. Korner, R.F. Singer, F.A. Muller, Cellular Ti-6Al-4V structures with interconnected macros porosity for bone implants fabricated by selective electron beam melting. Acta Biomater. 4, 1536-1544 (2008) 

  109. Biomaterials V Karageorgio 26 5474 2005 10.1016/j.biomaterials.2005.02.002 V. Karageorgio, D. Kaplan, Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials 26, 5474-5491 (2005) 

  110. J. Biomater. Tissue Eng. KC Nune 4 10 755 2014 10.1166/jbt.2014.1232 K.C. Nune, R.D.K. Misra, S.M. Gaytan, L.E. Murr, Biological response of next generation of 3D Ti-6Al-4V biomedical devices using additive manufacturing of cellular and functional mesh structures. J. Biomater. Tissue Eng. 4(10), 755-771 (2014) 

  111. Int. Mater. Rev. A Kumar 61 1 20 2016 10.1080/09506608.2015.1128310 A. Kumar, K.C. Nune, L.E. Murr, R.D.K. Misra, Biocompatibility and mechanical behavior of three-dimensional scaffolds for biomedical devices: process-structure-property paradigm. Int. Mater. Rev. 61(1), 20-45 (2016) 

  112. Proc. Roy. Soc. Lond. Math. Phys. Sci. LJ Gibson 383 43 1982 10.1098/rspa.1982.0088 L.J. Gibson, M.F. Ashby, The mechanics of three-dimensional cellular materials. Proc. Roy. Soc. Lond. Math. Phys. Sci. 383, 43-49 (1982) 

  113. Mater. Sci. Eng. A M Niinomi A243 231 1998 10.1016/S0921-5093(97)00806-X M. Niinomi, Mechanical properties of biomedical titanium alloys. Mater. Sci. Eng. A A243, 231-236 (1998) 

  114. Acta Biomater. YC Hao 3 277 2007 10.1016/j.actbio.2006.11.002 Y.C. Hao, S.J. Li, S.Y. Sun, C.Y. Zheng, R. Yang, Elastic deformation behavior of Ti-24Nb-4Zr-7-9Sn for biomedical applications. Acta Biomater. 3, 277-286 (2007) 

  115. J. Mater. Sci. Technol. J Hernandez 29 11 1011 2013 10.1016/j.jmst.2013.08.023 J. Hernandez, S.J. Li, E. Martinez, L.E. Murr, X.M. Pan, K.N. Amato, X.Y. Cheng, F. Yang, C.A. Terrazas, Y.C. Hao, R. Yang, F. Medina, R.B. Wicker, Microstructures and hardness properties for & β-phase Ti-24Nb-4Zr-7.9Sn alloy fabricated by electron beam melting. J. Mater. Sci. Technol. 29(11), 1011-1017 (2013) 

  116. LJ Gibson 1997 Cellular Solids: Structure and Properties 2 10.1017/CBO9781139878326 L.J. Gibson, M.F. Ashby, Cellular Solids: Structure and Properties, 2nd edn. (Cambridge Univ. Press, Cambridge, 1997) 

  117. Acta Mater. SJ Li 60 793 2012 10.1016/j.actamat.2011.10.051 S.J. Li, L.E. Murr, X.Y. Cheng, Z.B. Zhang, Y.L. Hao, R. Yang, F. Medina, Compression fatigue behavior of Ti-6Al-4V mesh arrays fabricated by electron beam melting. Acta Mater. 60, 793-802 (2012) 

  118. Acta Biomater. SJ Li 10 4537 2014 10.1016/j.actbio.2014.06.010 S.J. Li, Q.S. Xu, Z. Wang, W.T. Hou, Y.L. Hao, R. Yang, L.E. Murr, Influence of cell shape on mechanical properties of Ti-6Al-4V meshes fabricated by electron beam melting. Acta Biomater. 10, 4537-4547 (2014) 

  119. Iowa Orthoped. J. PF Gomez 25 25 2005 P.F. Gomez, J.A. Morcuende, Early attempts at hip arthroplasty: 1700s to 1950s. Iowa Orthoped. J. 25, 25-29 (2005) 

  120. Orthoped. Rev. SR Knight 3 2 1 2011 10.4081/or.2011.e16 S.R. Knight, R. Aujla, S.P. Biswas, Total hip arthroplasty-over 100 years of operative history. Orthoped. Rev. 3(2), 1-16 (2011) 

  121. J. Bone Jt. Surg. Amer. MH Kremer 97 17 1386 2015 10.2106/JBJS.N.01141 M.H. Kremer, D.R. Larson, C.S. Crawson, W.K. Krema, R.E. Washington, C.A. Skiner, C Prevalence of total hip and knee replacement in the United States. J. Bone Jt. Surg. Amer. 97(17), 1386-1397 (2015) 

  122. Ann. Transl. Med. H Cai 3 Suppl 1 S12 2015 H. Cai, Application of 3D pointing in orthopedics: Status quo and opportunities in China. Ann. Transl. Med. 3(Suppl 1), S12-S15 (2015) 

  123. S. J. Li, X. K. Hou, K. C. Nune, R. D. K. Misra, V. L. Correa-Rodriguez, Z. Guo, Y. L. Hao, R. Yang, L. E., Fabrication of open-cellular (porous) titanium alloy implants: osseointegration, vascularization and preliminary human trials. Sci. China Mater. Published online 4 August (2017) 

  124. L.E. Murr, Additive Manufacturing of Biomedical Devices: An Overview (Mater, Technol, 2018) 

  125. J. Mech. Behav. Biomed. Mater. DC Ackland 69 404 2017 10.1016/j.jmbbm.2017.01.048 D.C. Ackland, D. Robinson, M. Redhead, P. VeeSinLi, A. Moskaljuk, G. Dimitroulis, A personalized 3D printed prosthetic joint replacement for the human temporomandibular joint: From implant design to implantation. J. Mech. Behav. Biomed. Mater. 69, 404-411 (2017) 

  126. Metals V Weissmann 7 91 2017 10.3390/met7030091 V. Weissmann, P. Drescher, R. Bader, H. Seitz, H. Hansmann, N. Laufer, Comparison of single Ti-6Al-4V struts made using selective laser melting and electron beam melting subject to part orientation. Metals 7, 91-98 (2017) 

  127. Mater. Sci. Eng. A DA Ramirez 528A 5379 2011 10.1016/j.msea.2011.03.053 D.A. Ramirez, L.E. Murr, S.J. Li, E. Tian, E. Martinez, B.I. Machado, S.M. Gaytan, F. Medina, R.B. Wicker, Open-cellular copper structures fabricated by additive manufacturing using electron beam melting. Mater. Sci. Eng. A 528A, 5379-5386 (2011) 

  128. Materials LE Murr 4 782 2011 10.3390/ma4040782 L.E. Murr, S.J. Li, Y. Jian, K.N. Amato, E. Martinez, F. Medina, Open-cellular Co-base and Ni-base Superalloys fabricated by electron beam melting. Materials 4, 782-790 (2011) 

  129. Mater. Des. X Zhao 95 21 2016 10.1016/j.matdes.2015.12.135 X. Zhao, S.J. Li, M. Zhang, Y. Liu, T.B. Sercombe, S. Wang, Y.L. Hao, R. Yang, L.E. Murr, Comparison of the microstructures and mechanical properties of Ti-6Al-4V fabricated by selective laser melting and electron beam melting. Mater. Des. 95, 21-31 (2016) 

  130. J. Mech. Behav. Biomed. Mater. LE Murr 2 20 2010 10.1016/j.jmbbm.2008.05.004 L.E. Murr, S.A. Quinones, S.M. Gaytan, M.I. Lopez, A. Rodela, E.Y. Martinez, D.H. Hernandez, E. Martinez, F. Medina, R.B. Wicker, Microstructure and mechanical behavior of Ti-6Al-4V produced by rapid-layer manufacturing, for biomedical applications. J. Mech. Behav. Biomed. Mater. 2, 20-32 (2010) 

  131. J. Mater. Res. KN Amato 1 2 3 2012 K.N. Amato, J. Hernandez, L.E. Murr, E. Martinez, S.M. Gaytan, P.W. Shindo, Comparison of microstructures and properties for a Ni-base Superalloy (Alloy 625) fabricated by electron and laser beam melting. J. Mater. Res. 1(2), 3-15 (2012) 

  132. Mater. Lett. T Trosch 164 428 2016 10.1016/j.matlet.2015.10.136 T. Trosch, J. Strossner, R. Volkl, U. Glatzel, Microstructure and mechanical properties of selective laser melted Inconel 718 compared to forging and casting. Mater. Lett. 164, 428-431 (2016) 

  133. J. Othoped. Res. SL Sing 34 3 369 2016 10.1002/jor.23075 S.L. Sing, J. An, W.Y. Yeong, F.E. Wirier, Laser and electron-beam powder-bed additive manufacturing of metallic implants: a review on processes, materials and designs. J. Othoped. Res. 34(3), 369-385 (2016) 

  134. Bull. Canad. Inst. Min. Metall. D Hardwick 73 813 143 1980 D. Hardwick, W.M. Williams, The birth of metallography-The work of Henry Clifton Sorby (1826-1908). Bull. Canad. Inst. Min. Metall. 73(813), 143-144 (1980) 

  135. CS Smith 1960 A history of metallography: the development of ideas on the structure of metals before 1890 C.S. Smith, A history of metallography: the development of ideas on the structure of metals before 1890 (University of Chicago Press, Chicago, 1960) 

  136. Metallography CS Smith 8 91 1975 10.1016/0026-0800(75)90050-6 C.S. Smith, Metallography-How it started and where it’s going. Metallography 8, 91-103 (1975) 

관련 콘텐츠

오픈액세스(OA) 유형

BRONZE

출판사/학술단체 등이 한시적으로 특별한 프로모션 또는 일정기간 경과 후 접근을 허용하여, 출판사/학술단체 등의 사이트에서 이용 가능한 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로