$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Metal 3D printing in construction: A review of methods, research, applications, opportunities and challenges 원문보기

Engineering structures, v.180, 2019년, pp.332 - 348  

Buchanan, C. (Corresponding author.) ,  Gardner, L.

Abstract AI-Helper 아이콘AI-Helper

Abstract 3D printing, more formally known as additive manufacturing (AM), has the potential to revolutionise the construction industry, with foreseeable benefits including greater structural efficiency, reduction in material consumption and wastage, streamlining and expedition of the design-build p...

주제어

참고문헌 (99)

  1. Autom Constr Wu 68 21 2016 10.1016/j.autcon.2016.04.005 A critical review of the use of 3-D printing in the construction industry 

  2. Autom Constr Buswell 16 224 2007 10.1016/j.autcon.2006.05.002 Freeform construction: mega-scale rapid manufacturing for construction 

  3. CIRP Ann - Manuf Technol Kathryn 65 737 2016 10.1016/j.cirp.2016.05.004 Design for additive manufacturing: trends, opportunities, considerations, and constraints 

  4. Comput Aided Des Gao 69 65 2015 10.1016/j.cad.2015.04.001 The status, challenges, and future of additive manufacturing in engineering 

  5. Int J Prod Res Petrovic 49 1061 2011 10.1080/00207540903479786 Additive layered manufacturing: sectors of industrial application shown through case studies 

  6. ASTM International. ISO/ASTM 52900:2015(E) Standard terminology for additive manufacturing technologies - general principles - terminology; 2015. 

  7. Nat Chem Symes 4 349 2012 10.1038/nchem.1313 Integrated 3D-printed reactionware for chemical synthesis and analysis 

  8. Eur J Wood Wood Prod Henke 71 139 2013 10.1007/s00107-012-0658-z Wood based bulk material in 3D printing processes for applications in construction 

  9. Metall Mater Trans B Niendorf 44 794 2013 10.1007/s11663-013-9875-z Highly anisotropic steel processed by selective laser melting 

  10. Appl Phys Rev Yap 2 2015 10.1063/1.4935926 Review of selective laser melting: materials and applications 

  11. ISRN Mech Eng Wong 2012 1 2012 10.5402/2012/208760 A review of additive manufacturing 

  12. J Mater Process Technol Abe 111 210 2001 10.1016/S0924-0136(01)00522-2 The manufacturing of hard tools from metallic powders by selective laser melting 

  13. Acta Astronaut Cesaretti 93 430 2014 10.1016/j.actaastro.2013.07.034 Building components for an outpost on the lunar soil by means of a novel 3D printing technology 

  14. Proc Manuf Sun 1 308 2015 A review on 3D printing for customized food fabrication 

  15. J Sustain Dev Pearce 3 17 2010 10.5539/jsd.v3n4p17 3-D printing of open source appropriate technologies for self-directed sustainable development 

  16. Autom Constr Lim 21 262 2012 10.1016/j.autcon.2011.06.010 Developments in construction-scale additive manufacturing processes 

  17. Bus Horiz Berman 55 155 2012 10.1016/j.bushor.2011.11.003 3-D printing: the new industrial revolution 

  18. World Economic Forum. Winsun - Demonstrating the viability of 3D printing at construction scale; 2016. 

  19. Malik Chua J. World’s first 3D-printed pedestrian bridge pops up in Madrid. Inhabitat; 2017. <http://inhabitat.com/worlds-first-3d-printed-pedestrian-bridge-pops-up-in-madrid/> [accessed August 8, 2017]. 

  20. DUSarchitects. 3D Print Canal House; 2015. <http://3dprintcanalhouse.com/kamermaker-1> [accessed August 10, 2017]. 

  21. Joris Laarman Lab. MX3D Bridge (2017); 2017. <http://www.jorislaarman.com/work/mx3d-bridge/> [accessed August 20, 2017]. 

  22. Galjaard 2015 Optimizing structural building elements in metal by using additive manufacturing 

  23. World Economic Forum. Shaping the future of construction - a breakthrough in mindset and technology; 2016. 

  24. HM Government. Construction 2025 - industrial strategy: government and industry in partnership; 2013. 

  25. 10.56330/QVSI5222 Richardson V. 3D printing becomes concrete: exploring the structural potential of concrete 3D printing; 2017. 

  26. Addit Manuf Krimi 16 107 2017 10.1016/j.addma.2017.04.002 Prospective study on the integration of additive manufacturing to building industry-case of a French construction company 

  27. Virtual Phys Prototyping Bos 2759 1 2016 Additive manufacturing of concrete in construction: potentials and challenges of 3D concrete printing 

  28. Autom Constr Labonnote 72 347 2016 10.1016/j.autcon.2016.08.026 Additive construction: State-of-the-art, challenges and opportunities 

  29. Rapid Prototyping J Gibson 8 91 2002 10.1108/13552540210420961 Rapid prototyping for architectural models 

  30. Dubai Future Foundation. THE world’s first 3D printed office; 2016. <http://officeofthefuture.ae/#> [accessed October 10, 2017]. 

  31. Jackson B. Behind the 3D printed bridge: exclusive interview with Catalonian designers at IAAC. 3D Printing Industry; 2016. <https://3dprintingindustry.com/news/behind-3d-printed-bridge-exclusive-interview-catalonian-designers-iaac-101391/> [accessed August 8, 2017]. 

  32. IAAC. Large scale 3D printing; 2017. <https://iaac.net/research-projects/large-scale-3d-printing/3d-printed-bridge/> [accessed August 8, 2017]. 

  33. Clarke C. Royal BAM group use 3D printer to make concrete bicycle bridge with TU Eindhoven. 3D Printing Industry; 2017. <https://3dprintingindustry.com/news/royal-bam-group-concrete-3d-printer-concrete-bicycle-bridge-with-tu-eindhoven-116359/> [accessed August 8, 2017]. 

  34. Scott C. TU/e and BAM Infra get to work on 3D printed concrete bicycle bridge. 3D Print; 2017. <https://3dprint.com/178462/eindhoven-3d-printed-bridge/> [accessed August 8, 2017]. 

  35. Eindhoven University of Technology. World’s first 3D printed reinforced concrete bridge opened; 2017. <https://www.tue.nl/en/university/news-and-press/news/17-10-2017-worlds-first-3d-printed-reinforced-concrete-bridge-opened/> [accessed January 15, 2018]. 

  36. The Economist. 3D printing and clever computers could revolutionise construction. The Economist; 2017. <https://www.economist.com/news/science-and-technology/21722820-think-spiderweb-floors-denser-skyscrapers-and-ultra-thin-bridges-3d-printing-and> [accessed October 7, 2017]. 

  37. Laing O’Rourke. FreeFAB; 2017. <http://www.freefab.com> [accessed January 29, 2018]. 

  38. Prog Struct Mat Eng Gardner 7 45 2005 10.1002/pse.190 The use of stainless steel in structures 

  39. Int J Constr Manage Perkins 15 1 2015 Three-dimensional printing in the construction industry: a review 

  40. Wainwright O. Work begins on the world’s first 3D-printed house. Guardian; 2014. <https://www.theguardian.com/artanddesign/architecture-design-blog/2014/mar/28/work-begins-on-the-worlds-first-3d-printed-house> [accessed August 8, 2017]. 

  41. Proc Eng Hager 151 292 2016 10.1016/j.proeng.2016.07.357 3D printing of buildings and building components as the future of sustainable construction? 

  42. Frearson A. DUS architects builds 3D-printed micro home in Amsterdam. Dezeen; 2016. <https://www.dezeen.com/2016/08/30/dus-architects-3d-printed-micro-home-amsterdam-cabin-bathtub/> [accessed October 10, 2016]. 

  43. J Facade Des Eng Strauss 3 225 2015 10.3233/FDE-150042 Additive manufacturing for future facades: the potential of 3D printed parts for the building envelope 

  44. 10.59490/abe.2013.1.478 Strauss H. AM envelope - the potential of additive manufacturing for façade construction. vol. 3; 2013. 

  45. Galjaard 79 2014 Advances in architectural geometry New opportunities to optimize structural designs in metal by using additive manufacturing 

  46. Arup. 3D makeover for hyper-efficient metalwork. Arup News; 2015. <http://www.arup.com/news/2015_05_may/11_may_3d_makeover_for_hyper-efficient_metalwork> [accessed October 10, 2016]. 

  47. Anderson Goehrke S. 3D printed steel pedestrian bridge will soon span an Amsterdam canal. 3D Print; 2015. <https://3dprint.com/72682/amsterdam-3d-printed-bridge/> [accessed August 8, 2017]. 

  48. Mater Sci Technol Williams 32 641 2015 10.1179/1743284715Y.0000000073 Wire + arc additive manufacturing 

  49. Int Mater Rev Gu 57 133 2012 10.1179/1743280411Y.0000000014 Laser additive manufacturing of metallic components: materials, processes and mechanisms 

  50. Int J Adv Manuf Technol Ding 81 465 2015 10.1007/s00170-015-7077-3 Wire-feed additive manufacturing of metal components: technologies, developments and future interests 

  51. Joosten 2015 Printing a stainless steel bridge: an exploration of structural properties of stainless steel additive manufactures for civil engineering purposes 

  52. Sciaky Inc. Advantages of Wire AM vs. Powder AM; n.d. <http://www.sciaky.com/additive-manufacturing/wire-am-vs-powder-am> [accessed May 16, 2018]. 

  53. Int J Adv Manuf Technol Sasahara 27 268 2005 10.1007/s00170-004-2163-y Development of a layered manufacturing system using sheet metal-polymer lamination for mechanical parts 

  54. Scr Mater Jared 135 141 2017 10.1016/j.scriptamat.2017.02.029 Additive manufacturing: toward holistic design 

  55. J Manuf Sci Eng Sundaram 137 1 2015 10.1115/1.4029022 Mask-less electrochemical additive manufacturing: a feasibility study 

  56. Int J Adv Manuf Technol Tolosa 51 639 2010 10.1007/s00170-010-2631-5 Study of mechanical properties of AISI 316 stainless steel processed by “selective laser melting”, following different manufacturing strategies 

  57. Mater Sci Forum Mertens 783-786 898 2014 10.4028/www.scientific.net/MSF.783-786.898 Microstructures and mechanical properties of stainless steel AISI 316L processed by selective laser melting 

  58. Rapid Prototyping J Spierings 17 195 2011 10.1108/13552541111124770 Influence of the particle size distribution on surface quality and mechanical properties in AM steel parts 

  59. Mater Sci Eng A Mower 651 198 2016 10.1016/j.msea.2015.10.068 Mechanical behavior of additive manufactured, powder-bed laser-fused materials 

  60. Materialwiss Werkstofftech Meier 39 665 2008 10.1002/mawe.200800327 Experimental studies on selective laser melting of metallic parts 

  61. J Constr Steel Res Buchanan 136 35 2017 10.1016/j.jcsr.2017.05.002 Structural performance of additive manufactured metallic material and cross-sections 

  62. EOS. Material data sheet EOS stainless Steel 316L; 2014. 

  63. European Committee for Standardisation. EN 1993-1-4:2006+A1:2015 Eurocode 3 - design of steel structures - Part 1-4: general rules - supplementary rules for stainless steel; 2015. 

  64. British Standards Institution. BS EN 10088-2:2014 stainless steels Part 2: technical delivery conditions for sheet/plate and strip of corrosion resisting steels for general purposes. 

  65. Rapid Prototyping J Mercelis 12 254 2006 10.1108/13552540610707013 Residual stresses in selective laser sintering and selective laser melting 

  66. Metall Mater Trans A Wu 45 6260 2014 10.1007/s11661-014-2549-x An experimental investigation into additive manufacturing-induced residual stresses in 316L stainless steel 

  67. J Mater Eng Perform Sun 23 518 2014 10.1007/s11665-013-0784-8 Sliding wear characteristics and corrosion behaviour of selective laser melted 316L stainless steel 

  68. Mater Des Guan 50 581 2013 10.1016/j.matdes.2013.03.056 Effects of processing parameters on tensile properties of selective laser melted 304 stainless steel 

  69. Phys Proc Matilainen 83 808 2016 10.1016/j.phpro.2016.08.083 Weldability of additive manufactured stainless steel 

  70. Int J Adv Manuf Technol Khalid Rafi 69 1299 2013 10.1007/s00170-013-5106-7 A comparison of the tensile, fatigue, and fracture behavior of Ti-6Al-4V and 15-5 PH stainless steel parts made by selective laser melting 

  71. Rapid Prototyping J Spierings 19 88 2013 10.1108/13552541311302932 Fatigue performance of additive manufactured metallic parts 

  72. WIT Trans Built Environ Santorinaios 85 481 2006 Crush behaviour of open cellular lattice structures manufactured using selective laser melting 

  73. J Sandwich Struct Mater Shen 12 159 2010 10.1177/1099636209104536 The mechanical properties of sandwich structures based on metal lattice architectures 

  74. J Sandwich Struct Mater Ushijima 13 303 2011 10.1177/1099636210380997 An investigation into the compressive properties of stainless steel micro-lattice structures 

  75. J Laser Micro/Nanoeng Rehme 4 128 2009 10.2961/jlmn.2009.02.0010 Selective laser melting of honeycombs with negative Poisson’s ratio 

  76. Mater Sci Eng A Yadollahi 644 171 2015 10.1016/j.msea.2015.07.056 Effects of process time interval and heat treatment on the mechanical and microstructural properties of direct laser deposited 316L stainless steel 

  77. J Manuf Sci Eng Kahlen 123 38 1999 10.1115/1.1286472 Tensile strengths for laser-fabricated parts and similarity parameters for rapid manufacturing 

  78. Proc Inst Mech Eng, Part B: J Eng Manuf Spencer 212 175 1998 10.1243/0954405981515590 Rapid prototyping of metal parts by three-dimensional welding 

  79. Proc Inst Mech Eng, Part B: J Eng Manuf Suryakumar 227 1138 2013 10.1177/0954405413482122 A study of the mechanical properties of objects built through weld-deposition 

  80. Addit Manuf Haden 16 115 2017 10.1016/j.addma.2017.05.010 Wire and arc additive manufactured steel: tensile and wear properties 

  81. Bus Horiz Attaran 60 677 2017 10.1016/j.bushor.2017.05.011 The rise of 3-D printing: The advantages of additive manufacturing over traditional manufacturing 

  82. Assembly Automation Bogue 33 307 2013 10.1108/AA-06-2013-055 3D printing: the dawn of a new era in manufacturing? 

  83. Grunewald S. GE is using 3D printing and their new smart factory to revolutionize large-scale manufacturing. 3D Print; 2016. <https://3dprint.com/127906/ge-smart-factory/> [accessed August 11, 2017]. 

  84. SpaceX. SpaceX launches 3D-printed part to space, creates printed engine chamber. SpaceX News; 2014. <http://www.spacex.com/news/2014/07/31/spacex-launches-3d-printed-part-space-creates-printed-engine-chamber-crewed> [accessed October 10, 2016]. 

  85. Int J Adv Manuf Technol Leal 92 1671 2017 10.1007/s00170-017-0239-8 Additive manufacturing tooling for the automotive industry 

  86. Mater Des Cooper 41 226 2012 10.1016/j.matdes.2012.05.017 Additive manufacturing for product improvement at Red Bull Technology 

  87. EOS. Full thrust ahead: innovation for maintenance of high performance industrial gas turbines; 2014. 

  88. JOM Krishna 60 45 2008 10.1007/s11837-008-0059-2 Engineered porous metals for implants 

  89. Mater Manuf Processes Palčič 24 750 2009 10.1080/10426910902809776 Potential of Laser Engineered Net Shaping (LENS) Technology 

  90. Biomaterials Hollander 27 955 2006 10.1016/j.biomaterials.2005.07.041 Structural, mechanical and in vitro characterization of individually structured Ti-6Al-4V produced by direct laser forming 

  91. Rapid Prototyping J Vandenbroucke 13 196 2007 10.1108/13552540710776142 Selective laser melting of biocompatible metals for rapid manufacturing of medical parts 

  92. Proc R Soc A: Math Phys Eng Sci Moynihan 470 2014 10.1098/rspa.2014.0170 Utilization of structural steel in buildings 

  93. Proc Inst Mech Eng, Part C: J Mech Eng Sci Hague 217 25 2003 10.1243/095440603762554587 Implications on design of rapid manufacturing 

  94. McFalls R, Tall L. A study of welded columns manufactured from flame-cut plates. Fritz laboratory reports; 1967. 

  95. Eng Struct Hadjipantelis 2018 10.1016/j.engstruct.2018.06.027 Prestressed cold-formed steel beams: concept and mechanical behaviour 

  96. Lean Constr J Klotz 3 1 2007 10.60164/51g3a0i0i A lean modeling protocol for evaluating green project delivery 

  97. J Clean Prod Serres 19 1117 2011 10.1016/j.jclepro.2010.12.010 Environmental comparison of MESO-CLAD(R) process and conventional machining implementing life cycle assessment 

  98. Virtual Phys Prototyping Tay 12 261 2017 10.1080/17452759.2017.1326724 3D printing trends in building and construction industry: a review 

  99. Elliott L. Automation will affect one in five jobs across the UK, says study. The Guardian; 2017. 

관련 콘텐츠

오픈액세스(OA) 유형

GREEN

저자가 공개 리포지터리에 출판본, post-print, 또는 pre-print를 셀프 아카이빙 하여 자유로운 이용이 가능한 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로