$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Soy Protein/Cellulose Nanofiber Scaffolds Mimicking Skin Extracellular Matrix for Enhanced Wound Healing 원문보기

Advanced healthcare materials, v.7 no.9, 2018년, pp.1701175 -   

Ahn, Seungkuk (Disease Biophysics Group Wyss Institute for Biologically Inspired Engineering Harvard University 29 Oxford St. Pierce Hall, Rm 321 Cambridge MA 02138 USA) ,  Chantre, Christophe O. (Disease Biophysics Group Wyss Institute for Biologically Inspired Engineering Harvard University 29 Oxford St. Pierce Hall, Rm 321 Cambridge MA 02138 USA) ,  Gannon, Alanna R. (Disease Biophysics Group Wyss Institute for Biologically Inspired Engineering Harvard University 29 Oxford St. Pierce Hall, Rm 321 Cambridge MA 02138 USA) ,  Lind, Johan U. (Disease Biophysics Group Wyss Institute for Biologically Inspired Engineering Harvard University 29 Oxford St. Pierce Hall, Rm 321 Cambridge MA 02138 USA) ,  Campbell, Patrick H. (Disease Biophysics Group Wyss Institute for Biologically Inspired Engineering Harvard University 29 Oxford St. Pierce Hall, Rm 321 Cambridge MA 02138 USA) ,  Grevesse, Thomas (Disease Biophysics Group Wyss Institute for Biologically Inspired Engineering Harvard University 29 Oxford St. Pierce Hall, Rm 321 Cambridge MA 02138 USA) ,  O'Connor, Blakely B. (Disease Biophysics Group Wyss Institute for Biologically Inspire) ,  Parker, Kevin Kit

Abstract AI-Helper 아이콘AI-Helper

AbstractHistorically, soy protein and extracts have been used extensively in foods due to their high protein and mineral content. More recently, soy protein has received attention for a variety of its potential health benefits, including enhanced skin regeneration. It has been reported that soy prot...

참고문헌 (103)

  1. Sacks, Frank M., Lichtenstein, Alice, Van Horn, Linda, Harris, William, Kris-Etherton, Penny, Winston, Mary. Soy Protein, Isoflavones, and Cardiovascular Health : An American Heart Association Science Advisory for Professionals From the Nutrition Committee. Circulation, vol.113, no.7, 1034-1044.

  2. Potter, Susan M, Baum, Jo Ann, Teng, Hongyu, Stillman, Rachel J, Shay, Neil F, Erdman Jr, John W. Soy protein and isoflavones: their effects on blood lipids and bone density in postmenopausal women. The American journal of clinical nutrition, vol.68, no.6, 1375S-1379S.

  3. Lin, Leko, Perets, Anat, Har-el, Yah-el, Varma, Devika, Li, Mengyan, Lazarovici, Philip, Woerdeman, Dara L., Lelkes, Peter I.. Alimentary ‘green’ proteins as electrospun scaffolds for skin regenerative engineering : Electrospun soy scaffold for regenerative engineering. Journal of tissue engineering and regenerative medicine, vol.7, no.12, 994-1008.

  4. Tansaz, Samira, Boccaccini, Aldo R.. Biomedical applications of soy protein: A brief overview. Journal of biomedical materials research. Part A, vol.104, no.2, 553-569.

  5. Tokudome, Yoshihiro, Nakamura, Kyosuke, Kage, Madoka, Todo, Hiroaki, Sugibayashi, Kenji, Hashimoto, Fumie. Effects of soybean peptide and collagen peptide on collagen synthesis in normal human dermal fibroblasts. International journal of food sciences and nutrition, vol.63, no.6, 689-695.

  6. Chien, Karen B., Makridakis, Emmanuella, Shah, Ramille N.. Three-Dimensional Printing of Soy Protein Scaffolds for Tissue Regeneration. Tissue engineering. Part C, Methods, vol.19, no.6, 417-426.

  7. Chien, Karen B., Shah, Ramille N.. Novel soy protein scaffolds for tissue regeneration: Material characterization and interaction with human mesenchymal stem cells. Acta Biomaterialia: structure-property-function relationships in biomaterials, vol.8, no.2, 694-703.

  8. Setchell, Kenneth D. R.. Soy Isoflavones-Benefits and Risks from Nature’s Selective Estrogen Receptor Modulators (SERMs). Journal of the American College of Nutrition, vol.20, no.suppl5, 354S-362S.

  9. Cederroth, C.R., Nef, S.. Soy, phytoestrogens and metabolism: A review. Molecular and cellular endocrinology, vol.304, no.1, 30-42.

  10. Ascenzi, Paolo, Bocedi, Alessio, Marino, Maria. Structure–function relationship of estrogen receptor α and β: Impact on human health. Molecular aspects of medicine, vol.27, no.4, 299-402.

  11. Epstein, Franklin H., Mendelsohn, Michael E., Karas, Richard H.. The Protective Effects of Estrogen on the Cardiovascular System. The New England journal of medicine, vol.340, no.23, 1801-1811.

  12. Hall, Glenda, Phillips, Tania J.. Estrogen and skin: The effects of estrogen, menopause, and hormone replacement therapy on the skin. Journal of the American Academy of Dermatology, vol.53, no.4, 555-568.

  13. Ashcroft, Gillian S., Dodsworth, Joanne, Boxtel, Egon Van, Tarnuzzer, Roy W., Horan, Michael A., Schultz, Gregory S., Ferguson, Mark W.J.. Estrogen accelerates cutaneous wound healing associated with an increase in TGF-β1 levels. Nature medicine, vol.3, no.11, 1209-1215.

  14. Emmerson, E., Campbell, L., Ashcroft, G.S., Hardman, M.J.. The phytoestrogen genistein promotes wound healing by multiple independent mechanisms. Molecular and cellular endocrinology, vol.321, no.2, 184-193.

  15. Santin, Matteo, Ambrosio, Luigi. Soybean-based biomaterials: preparation, properties and tissue regeneration potential. Expert review of medical devices, vol.5, no.3, 349-358.

  16. Lee, J., Roh, K.B., Kim, S.C., Lee, J., Park, D.. Soy peptide-induced stem cell proliferation: involvement of ERK and TGF-β1. The Journal of nutritional biochemistry, vol.23, no.10, 1341-1351.

  17. Har-el, Y.e., Gerstenhaber, J.A., Brodsky, R., Huneke, R.B., Lelkes, P.I.. Electrospun soy protein scaffolds as wound dressings: Enhanced reepithelialization in a porcine model of wound healing. Wound medicine, vol.5, 9-15.

  18. Sirotkin, A.V., Harrath, A.H.. Phytoestrogens and their effects. European journal of pharmacology, vol.741, 230-236.

  19. Hsia, Sheng-Yang, Hsiao, Yu-Hsuan, Li, Wen-Tai, Hsieh, Jung-Feng. Aggregation of soy protein-isoflavone complexes and gel formation induced by glucono-δ-lactone in soymilk. Scientific reports, vol.6, 35718-.

  20. Hong, Hyunki, Landauer, Michael R., Foriska, Mark A., Ledney, G. David. Antibacterial activity of the soy isoflavone genistein. Journal of basic microbiology, vol.46, no.4, 329-335.

  21. Ben Arfa, A., Preziosi-Belloy, L., Chalier, P., Gontard, N.. Antimicrobial Paper Based on a Soy Protein Isolate or Modified Starch Coating Including Carvacrol and Cinnamaldehyde. Journal of agricultural and food chemistry, vol.55, no.6, 2155-2162.

  22. Chacko, Balu K., Chandler, Robert T., Mundhekar, Ameya, Khoo, Nicholas, Pruitt, Heather M., Kucik, Dennis F., Parks, Dale A., Kevil, Christopher G., Barnes, Stephen, Patel, Rakesh P.. Revealing anti-inflammatory mechanisms of soy isoflavones by flow: modulation of leukocyte-endothelial cell interactions. American journal of physiology, Heart and circulatory physiology, vol.289, no.2, H908-H915.

  23. Peñta‐Ramos, E.A., Xiong, Y.L.. Antioxidant Activity of Soy Protein Hydrolysates in a Liposomal System. Journal of food science : an official publication of the Institute of Food Technologists, vol.67, no.8, 2952-2956.

  24. Burns Babajafari S. 30310 0305 2017 

  25. Jenkins, G, Wainwright, L J, Holland, R, Barrett, K E, Casey, J. Wrinkle reduction in post-menopausal women consuming a novel oral supplement: a double-blind placebo-controlled randomized study. International journal of cosmetic science, vol.36, no.1, 22-31.

  26. IZUMI, Toru, SAITO, Makoto, OBATA, Akio, ARII, Masayuki, YAMAGUCHI, Hideyo, MATSUYAMA, Asahi. Oral Intake of Soy Isoflavone Aglycone Improves the Aged Skin of Adult Women. Journal of nutritional science and vitaminology, vol.53, no.1, 57-62.

  27. Rieger, Katrina A., Birch, Nathan P., Schiffman, Jessica D.. Designing electrospun nanofiber mats to promote wound healing - a review. Journal of materials chemistry. B, Materials for biology and medicine, vol.1, no.36, 4531-.

  28. Hassiba, Alaa J, El Zowalaty, Mohamed E, Nasrallah, Gheyath K, Webster, Thomas J, Luyt, Adriaan S, Abdullah, Aboubakr M, Elzatahry, Ahmed A. Review of Recent Research on Biomedical Applications of Electrospun Polymer Nanofibers for Improved Wound Healing. Nanomedicine, vol.11, no.6, 715-737.

  29. Boateng, Joshua S., Matthews, Kerr H., Stevens, Howard N.E., Eccleston, Gillian M.. Wound healing dressings and drug delivery systems: A review. Journal of pharmaceutical sciences : a publication of the American Pharmaceutical Association, vol.97, no.8, 2892-2923.

  30. Kumbar, S G, James, R, Nukavarapu, S P, Laurencin, C T. Electrospun nanofiber scaffolds: engineering soft tissues. Biomedical materials, vol.3, no.3, 034002-.

  31. Sell, Scott A., Wolfe, Patricia S., Garg, Koyal, McCool, Jennifer M., Rodriguez, Isaac A., Bowlin, Gary L.. The Use of Natural Polymers in Tissue Engineering: A Focus on Electrospun Extracellular Matrix Analogues. Polymers, vol.2, no.4, 522-553.

  32. Place, Elsie S., George, Julian H., Williams, Charlotte K., Stevens, Molly M.. Synthetic polymer scaffolds for tissue engineering. Chemical Society reviews, vol.38, no.4, 1139-1151.

  33. J. Biomed. Mater. Res., Part A Peng Y. Y. 1235 93 2010 10.1002/jbm.a.32616 

  34. Liu, Wei, Burdick, Jason A., van Osch, Gerjo J.V.M.. Plant-Derived Recombinant Human Collagen: A Strategic Approach for Generating Safe Human ECM-Based Scaffold. Tissue engineering. Part A, vol.19, no.13, 1489-1490.

  35. Zhong, S. P., Zhang, Y. Z., Lim, C. T.. Tissue scaffolds for skin wound healing and dermal reconstruction. Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology, vol.2, no.5, 510-525.

  36. Thirugnanaselvam, M., Gobi, N., Arun Karthick, S.. SPI/PEO blended electrospun martrix for wound healing. Fibers and polymers, vol.14, no.6, 965-969.

  37. Curt, Sèverine, Subirade, Muriel, Rouabhia, Mahmoud. Production andIn VitroEvaluation of Soy Protein-Based Biofilms as a Support for Human Keratinocyte and Fibroblast Culture. Tissue engineering. Part A, vol.15, no.6, 1223-1232.

  38. Li, Wan‐Ju, Laurencin, Cato T., Caterson, Edward J., Tuan, Rocky S., Ko, Frank K.. Electrospun nanofibrous structure: A novel scaffold for tissue engineering. Journal of biomedical materials research, vol.60, no.4, 613-621.

  39. Sinha-Ray, S., Zhang, Y., Yarin, A. L., Davis, S. C., Pourdeyhimi, B.. Solution Blowing of Soy Protein Fibers. Biomacromolecules, vol.12, no.6, 2357-2363.

  40. Xu, Xuezhu, Jiang, Long, Zhou, Zhengping, Wu, Xiangfa, Wang, Yechun. Preparation and Properties of Electrospun Soy Protein Isolate/Polyethylene Oxide Nanofiber Membranes. ACS applied materials & interfaces, vol.4, no.8, 4331-4337.

  41. Sett, S., Lee, M. W., Weith, M., Pourdeyhimi, B., Yarin, A. L.. Biodegradable and biocompatible soy protein/polymer/adhesive sticky nano-textured interfacial membranes for prevention of esca fungi invasion into pruning cuts and wounds of vines. Journal of materials chemistry. B, Materials for biology and medicine, vol.3, no.10, 2147-2162.

  42. Lee, Kuen Yong, Jeong, Lim, Kang, Yun Ok, Lee, Seung Jin, Park, Won Ho. Electrospinning of polysaccharides for regenerative medicine. Advanced drug delivery reviews, vol.61, no.12, 1020-1032.

  43. Miao, J., Pangule, R.C., Paskaleva, E.E., Hwang, E.E., Kane, R.S., Linhardt, R.J., Dordick, J.S.. Lysostaphin-functionalized cellulose fibers with antistaphylococcal activity for wound healing applications. Biomaterials, vol.32, no.36, 9557-9567.

  44. Rodríguez, Katia, Gatenholm, Paul, Renneckar, Scott. Electrospinning cellulosic nanofibers for biomedical applications: structure and in vitro biocompatibility. Cellulose, vol.19, no.5, 1583-1598.

  45. Huang, R., Li, W., Lv, X., Lei, Z., Bian, Y., Deng, H., Wang, H., Li, J., Li, X.. Biomimetic LBL structured nanofibrous matrices assembled by chitosan/collagen for promoting wound healing. Biomaterials, vol.53, 58-75.

  46. Badrossamay, Mohammad Reza, McIlwee, Holly Alice, Goss, Josue A., Parker, Kevin Kit. Nanofiber Assembly by Rotary Jet-Spinning. Nano letters : a journal dedicated to nanoscience and nanotechnology, vol.10, no.6, 2257-2261.

  47. Badrossamay, M.R., Balachandran, K., Capulli, A.K., Golecki, H.M., Agarwal, A., Goss, J.A., Kim, H., Shin, K., Parker, K.K.. Engineering hybrid polymer-protein super-aligned nanofibers via rotary jet spinning. Biomaterials, vol.35, no.10, 3188-3197.

  48. Mellado, Paula, McIlwee, Holly A., Badrossamay, Mohammad R., Goss, Josue A., Mahadevan, L., Kit Parker, Kevin. A simple model for nanofiber formation by rotary jet-spinning. Applied physics letters, vol.99, no.20, 203107-.

  49. Golecki, Holly McIlwee, Yuan, Hongyan, Glavin, Calla, Potter, Benjamin, Badrossamay, Mohammad R., Goss, Josue A., Phillips, Michael D., Parker, Kevin Kit. Effect of Solvent Evaporation on Fiber Morphology in Rotary Jet Spinning. Langmuir : the ACS journal of surfaces and colloids, vol.30, no.44, 13369-13374.

  50. Macromol. Mater. Eng. Gonzalez G. M. 302 2017 

  51. Capulli, Andrew K., Emmert, Maximillian Y., Pasqualini, Francesco S., Kehl, Debora, Caliskan, Etem, Lind, Johan U., Sheehy, Sean P., Park, Sung Jin, Ahn, Seungkuk, Weber, Benedikt, Goss, Josue A., Hoerstrup, Simon P., Parker, Kevin Kit. JetValve: Rapid manufacturing of biohybrid scaffolds for biomimetic heart valve replacement. Biomaterials, vol.133, 229-241.

  52. Achouri, Allaoua, Zhang, Wang, Shiying, Xu. Enzymatic hydrolysis of soy protein isolate and effect of succinylation on the functional properties of resulting protein hydrolysates. Food research international, vol.31, no.9, 617-623.

  53. Pham, Quynh P., Sharma, Upma, Mikos, Antonios G.. Electrospinning of Polymeric Nanofibers for Tissue Engineering Applications: A Review. Tissue engineering, vol.12, no.5, 1197-1211.

  54. Hodgkinson, Tom, Yuan, Xue-Feng, Bayat, Ardeshir. Electrospun silk fibroin fiber diameter influences in vitro dermal fibroblast behavior and promotes healing of ex vivo wound models. Journal of tissue engineering, vol.5, 2041731414551661-.

  55. Lowery, Joseph L., Datta, Néha, Rutledge, Gregory C.. Effect of fiber diameter, pore size and seeding method on growth of human dermal fibroblasts in electrospun poly(ϵ-caprolactone) fibrous mats. Biomaterials, vol.31, no.3, 491-504.

  56. Huang, Zheng-Ming, Zhang, Y.-Z., Kotaki, M., Ramakrishna, S.. A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Composites science and technology, vol.63, no.15, 2223-2253.

  57. Discher, Dennis E., Janmey, Paul, Wang, Yu-li. Tissue Cells Feel and Respond to the Stiffness of Their Substrate. Science, vol.310, no.5751, 1139-1143.

  58. Wells, Rebecca G.. The role of matrix stiffness in regulating cell behavior. Hepatology : official journal of the American Association for the Study of Liver Diseases, vol.47, no.4, 1394-1400.

  59. Agache, P. G., Monneur, C., Leveque, J. L., De Rigal, J.. Mechanical properties and Young's modulus of human skin in vivo. Archives of dermatological research, vol.269, no.3, 221-232.

  60. Liang, Xing, Boppart, Stephen A.. Biomechanical Properties of In Vivo Human Skin From Dynamic Optical Coherence Elastography. IEEE transactions on bio-medical engineering, vol.57, no.4, 953-959.

  61. Kuwazuru, Osamu, Saothong, Jariyaporn, Yoshikawa, Nobuhiro. Mechanical approach to aging and wrinkling of human facial skin based on the multistage buckling theory. Medical engineering & physics, vol.30, no.4, 516-522.

  62. Pailler-Mattei, C., Bec, S., Zahouani, H.. In vivo measurements of the elastic mechanical properties of human skin by indentation tests. Medical engineering & physics, vol.30, no.5, 599-606.

  63. Pan, Jian-feng, Liu, Ning-hua, Sun, Hui, Xu, Feng. Preparation and Characterization of Electrospun PLCL/Poloxamer Nanofibers and Dextran/Gelatin Hydrogels for Skin Tissue Engineering. PloS one, vol.9, no.11, e112885-.

  64. Chung, Tze-Wen, Liu, Der-Zen, Wang, Sin-Ya, Wang, Shoei-Shen. Enhancement of the growth of human endothelial cells by surface roughness at nanometer scale. Biomaterials, vol.24, no.25, 4655-4661.

  65. Xu, Chengyu, Yang, Fang, Wang, Shu, Ramakrishna, Seeram. In vitro study of human vascular endothelial cell function on materials with various surface roughness. Journal of biomedical materials research. Part A, vol.a71, no.1, 154-161.

  66. Jin, G., Prabhakaran, M.P., Kai, D., Annamalai, S.K., Arunachalam, K.D., Ramakrishna, S.. Tissue engineered plant extracts as nanofibrous wound dressing. Biomaterials, vol.34, no.3, 724-734.

  67. Hutmacher, Dietmar W.. Scaffolds in tissue engineering bone and cartilage. Biomaterials, vol.21, no.24, 2529-2543.

  68. Xue, J., He, M., Liu, H., Niu, Y., Crawford, A., Coates, P.D., Chen, D., Shi, R., Zhang, L.. Drug loaded homogeneous electrospun PCL/gelatin hybrid nanofiber structures for anti-infective tissue regeneration membranes. Biomaterials, vol.35, no.34, 9395-9405.

  69. Hu, Jue, Prabhakaran, Molamma P., Tian, Lingling, Ding, Xin, Ramakrishna, Seeram. Drug-loaded emulsion electrospun nanofibers: characterization, drug release and in vitro biocompatibility. RSC advances, vol.5, no.121, 100256-100267.

  70. Eckes, Beate, Zigrino, Paola, Kessler, Daniela, Holtkötter, Olaf, Shephard, Pierre, Mauch, Cornelia, Krieg, Thomas. Fibroblast-matrix interactions in wound healing and fibrosis. Matrix biology : journal of the International Society for Matrix Biology, vol.19, no.4, 325-332.

  71. Gurtner, Geoffrey C., Werner, Sabine, Barrandon, Yann, Longaker, Michael T.. Wound repair and regeneration. Nature, vol.453, no.7193, 314-321.

  72. Ekaputra, Andrew K., Prestwich, Glenn D., Cool, Simon M., Hutmacher, Dietmar W.. The three-dimensional vascularization of growth factor-releasing hybrid scaffold of poly (ϵ-caprolactone)/collagen fibers and hyaluronic acid hydrogel. Biomaterials, vol.32, no.32, 8108-8117.

  73. Jiang, Jiang, Li, Zhuoran, Wang, Hongjun, Wang, Yue, Carlson, Mark A., Teusink, Matthew J., MacEwan, Matthew R., Gu, Linxia, Xie, Jingwei. Expanded 3D Nanofiber Scaffolds: Cell Penetration, Neovascularization, and Host Response. Advanced healthcare materials, vol.5, no.23, 2993-3003.

  74. Grinnell, Frederick. Fibroblast–collagen-matrix contraction: growth-factor signalling and mechanical loading. Trends in cell biology, vol.10, no.9, 362-365.

  75. Sorrell, J. Michael, Caplan, Arnold I.. Fibroblast heterogeneity: more than skin deep. Journal of cell science, vol.117, no.5, 667-675.

  76. Sriram, G., Bigliardi, P.L., Bigliardi-Qi, M.. Fibroblast heterogeneity and its implications for engineering organotypic skin models in vitro. European journal of cell biology, vol.94, no.11, 483-512.

  77. Chan, F.K.-M., Moriwaki, K., De Rosa, M.J.. Detection of Necrosis by Release of Lactate Dehydrogenase Activity. Methods in molecular biology, vol.979, 65-70.

  78. 10.1002/(SICI)1097-4652(200003)182:3<311::AID-JCP1>3.0.CO;2-9 

  79. Liu, Shangxi, Shi-wen, Xu, Blumbach, Katrin, Eastwood, Mark, Denton, Christopher P., Eckes, Beate, Krieg, Thomas, Abraham, David J., Leask, Andrew. Expression of integrin β1 by fibroblasts is required for tissue repair in vivo. Journal of cell science, vol.123, no.21, 3674-3682.

  80. Huang, Chengyang, Fu, Xiaoling, Liu, Jie, Qi, Yanmei, Li, Shaohua, Wang, Hongjun. The involvement of integrin β1 signaling in the migration and myofibroblastic differentiation of skin fibroblasts on anisotropic collagen-containing nanofibers. Biomaterials, vol.33, no.6, 1791-1800.

  81. Grose, Richard, Hutter, Caroline, Bloch, Wilhelm, Thorey, Irmgard, Watt, Fiona M., Fässler, Reinhard, Brakebusch, Cord, Werner, Sabine. A crucial role of β1 integrins for keratinocyte migration in vitro and during cutaneous wound repair. Development, vol.129, no.9, 2303-2315.

  82. Li, Jie, Chen, Juan, Kirsner, Robert. Pathophysiology of acute wound healing. Clinics in dermatology, vol.25, no.1, 9-18.

  83. Margadant, Coert, Sonnenberg, Arnoud. Integrin-TGF‐β crosstalk in fibrosis, cancer and wound healing. EMBO reports, vol.11, no.2, 97-105.

  84. Galiano, Robert D., Michaels V, Joseph, Dobryansky, Michael, Levine, Jamie P., Gurtner, Geoffrey C.. Quantitative and reproducible murine model of excisional wound healing. Wound repair and regeneration : official publication of the Wound Healing Society [and] the European Tissue Repair Society, vol.12, no.4, 485-492.

  85. Wang, Xusheng, Ge, Jianfeng, Tredget, Edward E, Wu, Yaojiong. The mouse excisional wound splinting model, including applications for stem cell transplantation. Nature protocols, vol.8, no.2, 302-309.

  86. Griffin, Donald R., Weaver, Westbrook M., Scumpia, Philip O., Di Carlo, Dino, Segura, Tatiana. Accelerated wound healing by injectable microporous gel scaffolds assembled from annealed building blocks. Nature materials, vol.14, no.7, 737-744.

  87. Khorasani, H., Zheng, Z., Nguyen, C., Zara, J., Zhang, X., Wang, J., Ting, K., Soo, C.. A Quantitative Approach to Scar Analysis. The American journal of pathology, vol.178, no.2, 621-628.

  88. Marini, H, Polito, F, Altavilla, D, Irrera, N, Minutoli, L, Calò, M, Adamo, EB, Vaccaro, M, Squadrito, F, Bitto, A. Genistein aglycone improves skin repair in an incisional model of wound healing: a comparison with raloxifene and oestradiol in ovariectomized rats. British journal of pharmacology : BJP, vol.160, no.5, 1185-1194.

  89. Park, E., Lee, S.M., Jung, I.K., Lim, Y., Kim, J.H.. Effects of genistein on early-stage cutaneous wound healing. Biochemical and biophysical research communications, vol.410, no.3, 514-519.

  90. Tie, L., An, Y., Han, J., Xiao, Y., Xiaokaiti, Y., Fan, S., Liu, S., Chen, A.F., Li, X.. Genistein accelerates refractory wound healing by suppressing superoxide and FoxO1/iNOS pathway in type 1 diabetes. The Journal of nutritional biochemistry, vol.24, no.1, 88-96.

  91. Ma, Kun, Liao, Susan, He, Liumin, Lu, Jia, Ramakrishna, Seeram, Chan, Casey K.. Effects of Nanofiber/Stem Cell Composite on Wound Healing in Acute Full-Thickness Skin Wounds. Tissue engineering. Part A, Research advances, vol.17, no.9, 1413-1424.

  92. Gil, Eun Seok, Panilaitis, Bruce, Bellas, Evangelia, Kaplan, David L.. Functionalized Silk Biomaterials for Wound Healing. Advanced healthcare materials, vol.2, no.1, 206-217.

  93. Anjum, Fraz, Agabalyan, Natacha A., Sparks, Holly D., Rosin, Nicole L., Kallos, Michael S., Biernaskie, Jeff. Biocomposite nanofiber matrices to support ECM remodeling by human dermal progenitors and enhanced wound closure. Scientific reports, vol.7, 10291-.

  94. Levengood, Sheeny Lan, Erickson, Ariane E., Chang, Fei-chien, Zhang, Miqin. Chitosan-poly(caprolactone) nanofibers for skin repair. Journal of materials chemistry. B, Materials for biology and medicine, vol.5, no.9, 1822-1833.

  95. Xu, He‐Lin, Chen, Pian‐Pian, ZhuGe, De‐Li, Zhu, Qun‐Yan, Jin, Bing‐Hui, Shen, Bi‐Xin, Xiao, Jian, Zhao, Ying‐Zheng. Liposomes with Silk Fibroin Hydrogel Core to Stabilize bFGF and Promote the Wound Healing of Mice with Deep Second‐Degree Scald. Advanced healthcare materials, vol.6, no.19, 1700344-.

  96. Hotaling, N.A., Bharti, K., Kriel, H., Simon, C.G.. DiameterJ: A validated open source nanofiber diameter measurement tool. Biomaterials, vol.61, 327-338.

  97. Deravi, Leila F., Su, Tianxiang, Paten, Jeffrey A., Ruberti, Jeffrey W., Bertoldi, Katia, Parker, Kevin Kit. Differential Contributions of Conformation Extension and Domain Unfolding to Properties of Fibronectin Nanotextiles. Nano letters : a journal dedicated to nanoscience and nanotechnology, vol.12, no.11, 5587-5592.

  98. Stalder, A.F., Kulik, G., Sage, D., Barbieri, L., Hoffmann, P.. A snake-based approach to accurate determination of both contact points and contact angles. Colloids and surfaces. A, Physicochemical and engineering aspects, vol.286, no.1, 92-103.

  99. Liu, Xin, Lin, Tong, Gao, Yuan, Xu, Zhiguang, Huang, Chen, Yao, Gang, Jiang, Linlin, Tang, Yanwei, Wang, Xungai. Antimicrobial electrospun nanofibers of cellulose acetate and polyester urethane composite for wound dressing. Journal of biomedical materials research. Part B, Applied biomaterials, vol.b100, no.6, 1556-1565.

  100. Lin, Jiantao, Li, Caihong, Zhao, Yi, Hu, Jianchan, Zhang, Li-Ming. Co-electrospun NanofibrousMembranes of Collagen andZein for Wound Healing. ACS applied materials & interfaces, vol.4, no.2, 1050-1057.

  101. Thevenaz, P., Ruttimann, U.E., Unser, M.. A pyramid approach to subpixel registration based on intensity. IEEE transactions on image processing : a publication of the IEEE Signal Processing Society, vol.7, no.1, 27-41.

  102. Klopfenstein, Dieter R., Vale, Ronald D.. The Lipid Binding Pleckstrin Homology Domain in UNC-104 Kinesin is Necessary for Synaptic Vesicle Transport inCaenorhabditis elegans. Molecular biology of the cell, vol.15, no.8, 3729-3739.

  103. Rezakhaniha, R., Agianniotis, A., Schrauwen, J. T. C., Griffa, A., Sage, D., Bouten, C. V. C., van de Vosse, F. N., Unser, M., Stergiopulos, N.. Experimental investigation of collagen waviness and orientation in the arterial adventitia using confocal laser scanning microscopy. Biomechanics and modeling in mechanobiology, vol.11, no.3, 461-473.

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

오픈액세스(OA) 유형

GREEN

저자가 공개 리포지터리에 출판본, post-print, 또는 pre-print를 셀프 아카이빙 하여 자유로운 이용이 가능한 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로