$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Design of a Novel MEMS Microgripper with Rotatory Electrostatic Comb-Drive Actuators for Biomedical Applications 원문보기

Sensors, v.18 no.5, 2018년, pp.1664 -   

Velosa-Moncada, Luis A. (Departamento de Ingenierí) ,  Aguilera-Cortés, Luz Antonio (a Mecá) ,  González-Palacios, Max A. (nica, DICIS, Universidad de Guanajuato) ,  Raskin, Jean-Pierre (aguilera@ugto.mx (L.A.A.-C.)) ,  Herrera-May, Agustin L. (maxg@ugto.mx (M.A.G.-P.))

Abstract AI-Helper 아이콘AI-Helper

Primary tumors of patients can release circulating tumor cells (CTCs) to flow inside of their blood. The CTCs have different mechanical properties in comparison with red and white blood cells, and their detection may be employed to study the efficiency of medical treatments against cancer. We presen...

주제어

참고문헌 (55)

  1. 1. World Health Organization Available online: http://www.who.int/mediacentre/factsheets/fs297/en/ (accessed 16 December 2017) 

  2. 2. Siegel R.L. Miller K.D. Jemal A. Cancer statistics CA Cancer J. Clin. 2017 67 7 30 10.3322/caac.21387 28055103 

  3. 3. Lianidou E.D. Markou A. Circulating tumor cells in breast cancer: Detection systems, molecular characterization, and future challenges Clin. Chem. 2011 57 1242 1255 10.1373/clinchem.2011.165068 21784769 

  4. 4. Maheswaran S. Haber D.A. Circulating tumor cells: A window into cáncer biology and metástasis Curr. Opin. Genet. Dev. 2010 20 96 99 10.1016/j.gde.2009.12.002 20071161 

  5. 5. Autebert J. Coudert B. Bidard F.-C. Pierga J.-Y. Descroix S. Malaquin L. Viovy J.-L. Microfluidic: An innovative tool for efficient cell sorting Methods 2012 57 297 307 10.1016/j.ymeth.2012.07.002 22796377 

  6. 6. Rack B.K. Schindlbeck C. Undergassen U. Schneeweiss A. Zwingers T. Lichtenegger W. Beckmann M. Sommer H.L. Pantel K. Janni W. Use of circulating tumor cells (CTC) in peripheral blood of breast cancer patients before and after adjuvant chemotherapy to predict risk for relapse: The success trial J. Clin. Oncol. 2010 28 1003 10.1200/jco.2010.28.15_suppl.1003 

  7. 7. Pierga J.-Y. Bidard F.-C. Mathiot C. Brain E. Delaloge S. Giachetti S. De Cremoux P. Salmon R. Vicent-Salomon A. Marty M. Circulating tumor cell detection predicts early metastatic relapse after neoadjuvant chemotherapy in large operable and locally advanced breast cancer in a phase II ramdomized trial Clin. Cancer Res. 2008 14 7004 7010 10.1158/1078-0432.CCR-08-0030 18980996 

  8. 8. Bidard F.-C. Mathiot C. Delaloge S. Brain E. Giachetti S. de Cremoux P. Marty M. Pierga J.-Y. Single circulating tumor cell detection and overall survival in nonmetastatic breast cancer Ann. Oncol. 2010 21 729 733 10.1093/annonc/mdp391 19850639 

  9. 9. Cristofanilli M. Budd G.T. Ellis M.J. Stopeck A. Matera J. Miller M.C. Reuben J.M. Doyle G.V. Allard W.J. Terstappen L.V.M.M.M. Circulating Tumor Cells, Disease Progression, and Survival in Metastatic Breast Cancer N. Engl. J. Med. 2004 351 781 791 10.1056/NEJMoa040766 15317891 

  10. 10. Cohen S.J. Punt C.J.A. Iannotti N. Saidman B.H. Sabbath K.D. Gabrail N.Y. Picus J. Morse M. Mitchell E. Miller M.C. Relationship of circulating tumor cells to tumor response, progression-free survival, and overall survival in patients with metastatic colorectal cáncer J. Clin. Oncol. 2008 26 3213 3221 10.1200/JCO.2007.15.8923 18591556 

  11. 11. Scher H.I. Jia X. de Bono J.S. Fleisher M. Pienta K.J. Raghavan D. Heller G. Circulating tumour cells as prognostic markers in progressive, castration-resistant prostate cancer: A reanalysis of IMMC38 trial data Lancet Oncol. 2009 10 233 239 10.1016/S1470-2045(08)70340-1 19213602 

  12. 12. Li P. Stratton Z.S. Dao M. Ritz J. Huang T.J. Probing circulating tumor cells in microfluidics Lab Chip 2013 13 602 609 10.1039/c2lc90148j 23306378 

  13. 13. Dong Y. Skelley A.M. Merdek K.D. Sprott K.M. Jiang C. Pierceall W.E. Lin J. Stocum M. Carney W.P. Smirnov D.A. Microfluidics and circulating tumor cells J. Mol. Diagn. 2013 15 149 157 10.1016/j.jmoldx.2012.09.004 23266318 

  14. 14. Li P. Mao Z. Peng Z. Zhou L. Chen Y. Huang P.-H. Truica C.I. Drabick J.J. El-Deiry W.S. Dao M. Acoustic separation of circulating tumor cells Proc. Natl. Acad. Sci. USA 2015 112 4970 4975 10.1073/pnas.1504484112 25848039 

  15. 15. Ferreira M.M. Ramani V.C. Jeffrey S.S. Circulating tumor cell tecnologies Mol. Oncol. 2016 10 374 394 10.1016/j.molonc.2016.01.007 26897752 

  16. 16. Antfolk M. Magnusson C. Augustsson P. Lilja H. Laurell T. Acoustofluidic, label-free separation and simultaneous concentration of rare tumor cells from White bllod cells Anal. Chem. 2015 87 9322 9328 10.1021/acs.analchem.5b02023 26309066 

  17. 17. Wang K. Zhou W. Lin Z. Cai F. Li F. Wu J. Meng L. Niu L. Zheng H. Sorting of tumor cells in a microfluidic device by multi-stage Surface acoustic waves Sens. Actuators B Chem. 2018 258 1174 1183 10.1016/j.snb.2017.12.013 

  18. 18. Kojić N. Milošević M. Petrović D. Isailović V. Sarioglu A.F. Haber D.A. Kojić M. Tone M. A computational study of circulating large tumor cells traversing microvessels Comput. Biol. Med. 2015 63 187 195 10.1016/j.compbiomed.2015.05.024 26093786 

  19. 19. Meng S. Tripathy D. Frenkel E.P. Shete S. Naftalis E.Z. Huth J.F. Beitsch P.D. Leitch M. Hoover S. Euhus D. Circulating tumor cells in patients with breast cancer dormancy Clin. Cancer Res. 2004 10 8152 8162 10.1158/1078-0432.CCR-04-1110 15623589 

  20. 20. Moreno J.G. O’Hara S.M. Gross S. Doyle G. Fritsche H. Gomella L.G. Terstappen L.W.M.M. Changes in circulating carcinoma cells in patients with metastatic prostate cancer correlate with disease status Urology 2001 58 386 392 10.1016/S0090-4295(01)01191-8 11549486 

  21. 21. Zheng S. Lin H. Liu J.Q. Balic M. Datar R. Cote R.J. Tai Y.C. Membrane microfilter device for selective capture, electrolysis and genomic analysis of human circulating tumor cells J. Chromatogr. A 2007 1162 154 161 10.1016/j.chroma.2007.05.064 17561026 

  22. 22. Lentner C. Lentner C. Wink A. Geigy Scientific Tables CIBA-Geigy Basel, Switzerland 1981 

  23. 23. Shapiro H.M. Schildkraut E.R. Curbelo R. Laird C.W. Turner R.B. Hirschfeld T. Combined blood cell counting and classification with fluorochrome stains and flow instrumentation J. Histochem. Cytochem. 1976 24 396 411 10.1177/24.1.56391 56391 

  24. 24. Xu W. Mezencev R. Kim B. Wang L. McDonald J. Sulchek T. Cell stiffness is a biomarker of the metastatic potential of ovarian cancer cells PLoS ONE 2012 7 e46609 10.1371/journal.pone.0046609 23056368 

  25. 25. Kumar S. Weaver V.M. Mechanics, malignancy, and metastasis: The force journey of a tumor cell Cancer Metastasis Rev. 2009 28 113 127 10.1007/s10555-008-9173-4 19153673 

  26. 26. Swaminathan V. Mythreye K. O’Brien E.T. Berchuck A. Blobe G.C. Superfine R. Mechanical stiffness grades metastatic potential in patient tumor cells and in cancer cell lines Cancer Res. 2011 71 5075 5080 10.1158/0008-5472.CAN-11-0247 21642375 

  27. 27. Alibert C. Goud B. Manneville J.B. Are cancer cells really softer than normal cells? Biol. Cell 2017 109 167 189 10.1111/boc.201600078 28244605 

  28. 28. Li Q.S. Lee G.Y. Ong C.N. Lim C.T. AFM indentation study of breast cancer cells Biochem. Biophys. Res. Commun. 2008 374 609 613 10.1016/j.bbrc.2008.07.078 18656442 

  29. 29. Zhao X. Zhong Y. Ye T. Wand D. Mao B. Discrimination between cervical cancer cells and normal cervical cells based on longitudinal elasticity using atomic force microscopy Nanoscale Res. Lett. 2015 10 482 10.1186/s11671-015-1174-y 26666911 

  30. 30. Faria E.C. Ma N. Gazi E. Gardner P. Brown M. Clarke N.W. Snook R.D. Measurement of elastic properties of prostate cancer cells using AFM Analyst 2008 133 1498 1500 10.1039/b803355b 18936825 

  31. 31. Prabhune M. Belge G. Dotzauer A. Bullerdiek J. Radmacher M. Comparison of mechanical properties of normal and malignant thyroid cells Micron 2012 43 1267 1272 10.1016/j.micron.2012.03.023 22522060 

  32. 32. Lekka M. Discrimination between normal and cancerous cells using AFM Bionanoscience 2016 6 65 80 10.1007/s12668-016-0191-3 27014560 

  33. 33. Runge J. Reichert T.E. Fritsch A. Kas J. Bertolini J. Remmerbach T.W. Evaluation of single-cell biomechanics as potential marker for oral squamous cell carcinomas: A pilot study Oral Dis. 2014 20 e120 e127 10.1111/odi.12171 24006964 

  34. 34. Guck J. Schinkinger S. Lincoln B. Wottawah F. Ebert S. Romeyke M. Lenz D. Erickson H.M. Ananthakrishnan R. Mitchell D. Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence Biophys. J. 2005 88 3689 3698 10.1529/biophysj.104.045476 15722433 

  35. 35. Ameneh M. Mechanical Properties of Cancer Cells: A Possible Biomarker for Stemness Ph.D. Dissertation Ohio University Athens, OH, USA 2015 

  36. 36. Lim C.T. Zhou E.H. Li A. Vedula S.R.K. Fu H.X. Experimental techniques for single cell and single molecule biomechanics Mater. Sci. Eng. C 2006 26 1278 1288 10.1016/j.msec.2005.08.022 

  37. 37. Loh O. Vaziri A. Espinosa H.D. The potential of MEMS for advancing experiments and modeling in cell mechanics Exp. Mech. 2009 49 105 124 10.1007/s11340-007-9099-8 

  38. 38. Qu J. Zhang W. Jung A. Silva-Da Cruz S. Liu X. A MEMS Microgripper with Two-Axis Actuators and Force Sensors for Microscale Mechanical Characterization of Soft Materials Proceedings of the 2015 IEEE International Conference on Automation Science and Engineering (CASE) Gothenburg, Sweden 24–28 August 2015 1620 1625 10.1109/CoASE.2015.7294332 

  39. 39. Kim K. Liu X. Zhang Y. Sun Y. Nanonewton force-controlled manipulation of biological cells using a monolithic MEMS microgripper with two-axis force feedback J. Micromech. Microeng. 2008 18 055013 10.1088/0960-1317/18/5/055013 

  40. 40. Chang H. Zhao H. Ye F. Yuan G. Xie J. Kraft M. Yuan W. A rotary comb-actuated microgripper with a large displacement range Microsyst. Technol. 2014 20 119 126 10.1007/s00542-013-1737-8 

  41. 41. Yuan G. Yuan W. Hao Y. Li X. Chang H. A microgripper with a post-assembly self-locking mechanism Sensors 2015 15 20140 20151 10.3390/s150820140 26287208 

  42. 42. Zhang X.M. Liu A.Q. Lu C. Tan D.Y. A real pivot structure for MEMS tunable lasers J. Microelectromech. Syst. 2007 16 269 278 10.1109/JMEMS.2006.889532 

  43. 43. Amin T.M.F. Huda M.Q. Tulip J. Jäger W. A virtual pivot point MEMS actuator with externally mounted mirror, design, fabrication and characterization Sens. Transducers 2014 183 65 71 

  44. 44. Sandia National Laboratories Available online: http://www.sandia.gov/mstc/mems/ (accessed on 21 December 2017) 

  45. 45. Bao M. Analysis and Design Principles of MEMS Devices Elsevier Amsterdam, The Netherlands 2005 

  46. 46. Tu C.-C. Fanchiang K. Liu C.H. 1 × N rotary vertical micromirror for optical switching applications Proc. SPIE MOEMS Miniat. Syst. V 2005 5719 10.1117/12.589810 

  47. 47. Piriyanont B. Fowler A.G. Moheimani S.O.R. Force-controlled MEMS rotary microgripper J. Microelectromech. Syst. 2015 24 1164 1172 10.1109/JMEMS.2015.2388539 

  48. 48. Budynas R.G. Nisbett J.K. Shigley’s Mechanical Engineering Design 9th ed. Mc Graw Hill New York, NY, USA 2008 

  49. 49. Younis M. MEMS Linear and Nonlinear Statics and Dynamics Springer Science Business Media New York, NY, USA 2011 

  50. 50. Lobontiu N. Ephrahim G. Mechanics of Microelectromechanical Systems Kluwer Academic Publishers New York, NY, USA 2005 

  51. 51. Kim K. Cheng J. Liu Q. Wu X.Y. Sun Y. Investigation of mechanical properties of soft hydrogel microcapsules in relation protein delivery using a MEMS force sensor J. Biomed. Mater. Res. 2010 92A 103 113 10.1002/jbm.a.32338 19165782 

  52. 52. Tatara Y. Large deformations of a rubber sphere under diametral compression. Part 1: Theoretical analysis of press approach, contact radius and lateral extension JSME Int. J. Ser. A Mech. Mater. Eng. 1993 36 190 196 10.1299/jsmea1993.36.2_190 

  53. 53. Trickey W.R. Baaijens F.P. Laursen T.A. Alexopoulos L.G. Guilak F. Determination of the Poisson’s ratio of the cell: Recovery properties of chondrocytes after release from complete micropipette aspiration J. Biomech. 2006 39 78 87 10.1016/j.jbiomech.2004.11.006 16271590 

  54. 54. Nicolae L. System Dynamics for Engineering Students Elsevier New York, NY, USA 2010 

  55. 55. Weaver W. Jr. Timoshenko S.P. Young D.H. Vibration Problems in Engineering 5th ed. Wiley New York, NY, USA 1990 

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로