$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

The Pros and Cons of the Use of Laser Ablation Synthesis for the Production of Silver Nano-Antimicrobials 원문보기

Antibiotics, v.7 no.3, 2018년, pp.67 -   

Sportelli, Maria Chiara (Dipartimento di Chimica, Università) ,  Izzi, Margherita (degli Studi di Bari “Aldo Moro”, via E. Orabona 4, 70126 Bari, Italy) ,  Volpe, Annalisa (maria.sportelli@uniba.it (M.C.S.)) ,  Clemente, Maurizio (m.izzi@studenti.uniba.it (M.I.)) ,  Picca, Rosaria Anna (m.clemente8@studenti.uniba.it (M.C.)) ,  Ancona, Antonio (rosaria.picca@uniba.it (R.A.P.)) ,  Lugarà, Pietro Mario (gerardo.palazzo@uniba.it (G.P.)) ,  Palazzo, Gerardo (Dipartimento di Chimica, Università) ,  Cioffi, Nicola (degli Studi di Bari “Aldo Moro”, via E. Orabona 4, 70126 Bari, Italy)

Abstract AI-Helper 아이콘AI-Helper

Silver nanoparticles (AgNPs) are well-known for their antimicrobial effects and several groups are proposing them as active agents to fight antimicrobial resistance. A wide variety of methods is available for nanoparticle synthesis, affording a broad spectrum of chemical and physical properties. In ...

주제어

참고문헌 (199)

  1. 1. Lue J.T. Physical Properties of Nanomaterials Encyclopedia of Nanoscience and Nanotechnology Nalwa H.S. American Scientific Publishers Valencia, CA, USA 2007 Volume 10 1 46 1-58883-058-6 

  2. 2. Daraee H. Eatemadi A. Abbasi E. Aval S.F. Kouhi M. Akbarzadeh A. Application of gold nanoparticles in biomedical and drug delivery Artif. Cells Nanomed. Biotechnol. 2016 44 410 422 10.3109/21691401.2014.955107 25229833 

  3. 3. Sun H. Jia J. Jiang C. Zhai S. Gold Nanoparticle-Induced Cell Death and Potential Applications in Nanomedicine Int. J. Mol. Sci. 2018 19 754 10.3390/ijms19030754 29518914 

  4. 4. Yacoot S.M. Salem N.F. A Sonochemical-assisted Simple and Green Synthesis of Silver Nanoparticles and its Use in Cosmetics Int. J. Pharmacol. 2016 12 572 575 10.3923/ijp.2016.572.575 

  5. 5. Jiménez-Pérez Z.E. Singh P. Kim Y.-J. Mathiyalagan R. Kim D.-H. Lee M.H. Yang D.C. Applications of Panax ginseng leaves-mediated gold nanoparticles in cosmetics relation to antioxidant, moisture retention, and whitening effect on B16BL6 cells J. Ginseng Res. 2018 42 327 333 10.1016/j.jgr.2017.04.003 29983614 

  6. 6. Syed B. Tatiana V. Prudnikova S.V. Satish S. Prasad N. Nanoagroparticles emerging trends and future prospect in modern agriculture system Environ. Toxicol. Pharmacol. 2017 53 10 17 10.1016/j.etap.2017.04.012 28499265 

  7. 7. Kaphle A. Navya P.N. Umapathi A. Daima H.K. Nanomaterials for agriculture, food and environment: Applications, toxicity and regulation Environ. Chem. Lett. 2018 16 43 58 10.1007/s10311-017-0662-y 

  8. 8. Sharma C. Dhiman R. Rokana N. Panwar H. Nanotechnology: An Untapped Resource for Food Packaging Front. Microbiol. 2017 8 1735 10.3389/fmicb.2017.01735 28955314 

  9. 9. Srivastava A.K. Dev A. Karmakar S. Nanosensors and nanobiosensors in food and agriculture Environ. Chem. Lett. 2018 16 161 182 10.1007/s10311-017-0674-7 

  10. 10. Ko S.H. Low temperature thermal engineering of nanoparticle ink for flexible electronics applications Semicond. Sci. Technol. 2016 31 073003 10.1088/0268-1242/31/7/073003 

  11. 11. Liu X. Iocozzia J. Wang Y. Cui X. Chen Y. Zhao S. Li Z. Lin Z. Noble metal-metal oxide nanohybrids with tailored nanostructures for efficient solar energy conversion, photocatalysis and environmental remediation Energy Environ. Sci. 2017 10 402 434 10.1039/C6EE02265K 

  12. 12. Akbari A. Amini M. Tarassoli A. Eftekhari-Sis B. Ghasemian N. Jabbari E. Transition metal oxide nanoparticles as efficient catalysts in oxidation reactions Nano-Struct. Nano-Objects 2018 14 19 48 10.1016/j.nanoso.2018.01.006 

  13. 13. Baker S. Volova T. Prudnikova S.V. Satish S. Prasad N. Nanoagroparticles emerging trends and future prospect in modern agriculture system Environ. Toxicol. Pharmacol. 2017 53 10 17 10.1016/j.etap.2017.04.012 28499265 

  14. 14. Duhan J.S. Kumar R. Kumar N. Kaur P. Nehra K. Duhan S. Nanotechnology: The new perspective in precision agriculture Biotechnol. Rep. 2017 15 11 23 10.1016/j.btre.2017.03.002 28603692 

  15. 15. Ammar A.S. Nanotechnologies associated to floral resources in agri-food sector Acta Agron. 2018 67 146 159 10.15446/acag.v67n1.62011 

  16. 16. Bhagat Y. Gangadhara K. Rabinal C. Chaudhari G. Ugale P. Nanotechnology in agriculture: A review J. Pure Appl. Microbiol. 2015 9 737 747 

  17. 17. Duncan T.V. Applications of nanotechnology in food packaging and food safety: Barrier materials, antimicrobials and sensors J. Colloid Interface Sci. 2011 363 1 24 10.1016/j.jcis.2011.07.017 21824625 

  18. 18. Picca R.A. Di Maria A. Riháková L. Volpe A. Sportelli M.C. Lugarà P.M. Ancona A. Cioffi N. Laser ablation synthesis of hybrid copper/silver Nanocolloids for prospective application as Nanoantimicrobial agents for food packaging MRS Adv. 2016 1 3735 3740 10.1557/adv.2016.336 

  19. 19. Sportelli M.C. Volpe A. Picca R.A. Trapani A. Palazzo C. Ancona A. Lugarà P.M. Trapani G. Cioffi N. Spectroscopic characterization of copper-chitosan Nanoantimicrobials prepared by laser ablation synthesis in aqueous solutions Nanomaterials 2017 7 6 10.3390/nano7010006 28336840 

  20. 20. De Azeredo H.M. Nanocomposites for food packaging applications Food Res. Int. 2009 42 1240 1253 10.1016/j.foodres.2009.03.019 

  21. 21. Ahmad N. Bhatnagar S. Dubey S.D. Saxena R. Sharma S. Dutta R. Nanopackaging in Food and Electronics Nanoscience in Food and Agriculture 4 Sustainable Agriculture Reviews Springer Cham, Switzerland 2017 45 97 978-3-319-53111-3 

  22. 22. Sportelli M.C. Picca R.A. Cioffi N. Nano-antimicrobials based on metals Novel Antimicrobial Agents and Strategies Phoenix D.A. Harris F. Dennison S.R. Wiley-VCH Verlag GmbH & Co. KGaA Weinheim, Germany 2014 181 218 978-3-527-67613-2 

  23. 23. Carbone M. Donia D.T. Sabbatella G. Antiochia R. Silver nanoparticles in polymeric matrices for fresh food packaging J. King Saud Univ. Sci. 2016 28 273 279 10.1016/j.jksus.2016.05.004 

  24. 24. Farhoodi M. Nanocomposite materials for food packaging applications: Characterization and safety evaluation Food Eng. Rev. 2016 8 35 51 10.1007/s12393-015-9114-2 

  25. 25. Hannon J.C. Kerry J. Cruz-Romero M. Morris M. Cummins E. Advances and challenges for the use of engineered nanoparticles in food contact materials Trends Food Sci. Technol. 2015 43 43 62 10.1016/j.tifs.2015.01.008 

  26. 26. Hoseinnejad M. Jafari S.M. Katouzian I. Inorganic and metal nanoparticles and their antimicrobial activity in food packaging applications Crit. Rev. Microbiol. 2018 44 161 181 10.1080/1040841X.2017.1332001 28578640 

  27. 27. Kuswandi B. Environmental friendly food nano-packaging Environ. Chem. Lett. 2017 15 205 221 10.1007/s10311-017-0613-7 

  28. 28. Llorens A. Lloret E. Picouet P.A. Trbojevich R. Fernandez A. Metallic-based micro and nanocomposites in food contact materials and active food packaging Trends Food Sci. Technol. 2012 24 19 29 10.1016/j.tifs.2011.10.001 

  29. 29. Narayan R.J. Adiga S.P. Pellin M.J. Curtiss L.A. Stafslien S. Chisholm B. Monteiro-Riviere N.A. Brigmon R.L. Elam J.W. Atomic layer deposition of nanoporous biomaterials Mater. Today 2010 13 60 64 10.1016/S1369-7021(10)70035-3 

  30. 30. Piperigkou Z. Karamanou K. Engin A.B. Gialeli C. Docea A.O. Vynios D.H. Pavão M.S.G. Golokhvast K.S. Shtilman M.I. Argiris A. Emerging aspects of nanotoxicology in health and disease: From agriculture and food sector to cancer therapeutics Food Chem. Toxicol. 2016 91 42 57 10.1016/j.fct.2016.03.003 26969113 

  31. 31. De Azeredo H.M. Antimicrobial nanostructures in food packaging Trends Food Sci. Technol. 2013 30 56 69 10.1016/j.tifs.2012.11.006 

  32. 32. Rhim J.-W. Hong S.-I. Park H.-M. Ng P.K.W. Preparation and characterization of chitosan-based nanocomposite films with antimicrobial activity J. Agric. Food Chem. 2006 54 5814 5822 10.1021/jf060658h 16881682 

  33. 33. Novikov S.M. Popok V.N. Evlyukhin A.B. Hanif M. Morgen P. Fiutowski J. Beermann J. Rubahn H.-G. Bozhevolnyi S.I. Highly stable monocrystalline silver clusters for plasmonic applications Langmuir 2017 33 6062 6070 10.1021/acs.langmuir.7b00772 28541708 

  34. 34. Pugazhendhi S. Palanisamy P.K. Jayavel R. Synthesis of highly stable silver nanoparticles through a novel green method using Mirabillis jalapa for antibacterial, nonlinear optical applications Opt. Mater. 2018 79 457 463 10.1016/j.optmat.2018.04.017 

  35. 35. Franci G. Falanga A. Galdiero S. Palomba L. Rai M. Morelli G. Galdiero M. Silver nanoparticles as potential antibacterial agents Molecules 2015 20 8856 8874 10.3390/molecules20058856 25993417 

  36. 36. Le Ouay B. Stellacci F. Antibacterial activity of silver nanoparticles: A surface science insight Nano Today 2015 10 339 354 10.1016/j.nantod.2015.04.002 

  37. 37. Lara H.H. Garza-Treviño E.N. Ixtepan-Turrent L. Singh D.K. Silver nanoparticles are broad-spectrum bactericidal and virucidal compounds J. Nanobiotechnol. 2011 9 30 10.1186/1477-3155-9-30 21812950 

  38. 38. Miyayama T. Arai Y. Hirano S. Health Effects of Silver Nanoparticles and Silver Ions Biological Effects of Fibrous and Particulate Substances Current Topics in Environmental Health and Preventive Medicine Springer Tokyo, Japan 2016 137 147 978-4-431-55731-9 

  39. 39. Hansen S.F. Baun A. European regulation affecting nanomaterials—Review of limitations and future recommendations Dose-Response 2011 10 364 383 10.2203/dose-response.10-029.Hansen 22942870 

  40. 40. Zhou Q. Liu W. Long Y. Sun C. Jiang G. Toxicological effects and mechanisms of silver nanoparticles Silver Nanoparticles in the Environment Springer Berlin/Heidelberg, Germany 2015 109 138 978-3-662-46069-6 

  41. 41. Rai M. Yadav A. Cioffi N. Silver Nanoparticles as Nano-antimicrobials: Bioactivity, benefits and bottlenecks Nano-Antimicrobials Springer Berlin/Heidelberg, Germany 2012 211 224 978-3-642-24427-8 

  42. 42. El-Ansary A. Al-Daihan S. On the Toxicity of Therapeutically Used Nanoparticles: An Overview Available online: https://www.hindawi.com/journals/jt/2009/754810/ (accessed on 23 June 2018) 

  43. 43. Gaillet S. Rouanet J.-M. Silver nanoparticles: Their potential toxic effects after oral exposure and underlying mechanisms—A review Food Chem. Toxicol. 2015 77 58 63 10.1016/j.fct.2014.12.019 25556118 

  44. 44. Gupta I. Duran N. Rai M. Nano-silver toxicity: Emerging concerns and consequences in human health Nano-Antimicrobials Springer Berlin/Heidelberg, Germany 2012 525 548 978-3-642-24427-8 

  45. 45. Jamuna B.A. Ravishankar R.V. Environmental risk, human health, and toxic effects of nanoparticles Nanomaterials for Environmental Protection Wiley-Blackwell Hoboken, NJ, USA 2014 523 535 978-1-118-84553-0 

  46. 46. Levard C. Hotze E.M. Lowry G.V. Brown G.E. Environmental transformations of silver nanoparticles: Impact on stability and toxicity Environ. Sci. Technol. 2012 46 6900 6914 10.1021/es2037405 22339502 

  47. 47. Marambio-Jones C. Hoek E.M.V. A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment J. Nanopart. Res. 2010 12 1531 1551 10.1007/s11051-010-9900-y 

  48. 48. Santos C.A.D. Seckler M.M. Ingle A.P. Gupta I. Galdiero S. Galdiero M. Gade A. Rai M. Silver Nanoparticles: Therapeutical Uses, Toxicity, and Safety Issues J. Pharm. Sci. 2014 103 1931 1944 10.1002/jps.24001 24824033 

  49. 49. Gonzalez C. Rosas-Hernandez H. Ramirez-Lee M.A. Salazar-García S. Ali S.F. Role of silver nanoparticles (AgNPs) on the cardiovascular system Arch. Toxicol. 2016 90 493 511 10.1007/s00204-014-1447-8 25543135 

  50. 50. Abbasi E. Milani M. Aval S.F. Kouhi M. Akbarzadeh A. Nasrabadi H.T. Nikasa P. Joo S.W. Hanifehpour Y. Nejati-Koshki K. Silver nanoparticles: Synthesis methods, bio-applications and properties Crit. Rev. Microbiol. 2016 42 173 180 10.3109/1040841X.2014.912200 24937409 

  51. 51. Abdelghany T.M. Al-Rajhi A.M.H. Abboud M.A.A. Alawlaqi M.M. Magdah A.G. Helmy E.A.M. Mabrouk A.S. Recent advances in green synthesis of silver nanoparticles and their applications: About future directions. A review BioNanoScience 2018 8 5 16 10.1007/s12668-017-0413-3 

  52. 52. Akter M. Sikder M.T. Rahman M.M. Ullah A.K.M.A. Hossain K.F.B. Banik S. Hosokawa T. Saito T. Kurasaki M. A systematic review on silver nanoparticles-induced cytotoxicity: Physicochemical properties and perspectives J. Adv. Res. 2018 9 1 16 10.1016/j.jare.2017.10.008 30046482 

  53. 53. Beyene H.D. Werkneh A.A. Bezabh H.K. Ambaye T.G. Synthesis paradigm and applications of silver nanoparticles (AgNPs), a review Sustain. Mater. Technol. 2017 13 18 23 10.1016/j.susmat.2017.08.001 

  54. 54. Calderón-Jiménez B. Johnson M.E. Montoro Bustos A.R. Murphy K.E. Winchester M.R. Vega Baudrit J.R. Silver Nanoparticles: Technological advances, societal impacts, and metrological challenges Front. Chem. 2017 5 6 10.3389/fchem.2017.00006 28271059 

  55. 55. De Matteis V. Cascione M. Toma C.C. Leporatti S. Silver Nanoparticles: Synthetic Routes, In vitro toxicity and theranostic applications for cancer disease Nanomaterials 2018 8 319 10.3390/nano8050319 29748469 

  56. 56. Javaid A. Oloketuyi S.F. Khan M.M. Khan F. Diversity of Bacterial Synthesis of Silver Nanoparticles BioNanoScience 2018 8 43 59 10.1007/s12668-017-0496-x 

  57. 57. Khan A.U. Malik N. Khan M. Cho M.H. Khan M.M. Fungi-assisted silver nanoparticle synthesis and their applications Bioprocess Biosyst. Eng. 2018 41 1 20 10.1007/s00449-017-1846-3 28965140 

  58. 58. Khatoon U.T. Rao G.V.S.N. Mantravadi K.M. Oztekin Y. Strategies to synthesize various nanostructures of silver and their applications—A review RSC Adv. 2018 8 19739 19753 10.1039/C8RA00440D 

  59. 59. Malik B. Pirzadah T.B. Kumar M. Rehman R.U. Biosynthesis of nanoparticles and their application in pharmaceutical industry Nanotechnology Springer Singapore 2017 235 252 978-981-10-4677-3 

  60. 60. Pandiarajan J. Krishnan M. Properties, synthesis and toxicity of silver nanoparticles Environ. Chem. Lett. 2017 15 387 397 10.1007/s10311-017-0624-4 

  61. 61. Pinto R.J.B. Nasirpour M. Carrola J. Oliveira H. Freire C.S.R. Duarte I.F. Antimicrobial properties and therapeutic applications of silver nanoparticles and nanocomposites Antimicrobial Nanoarchitectonics Grumezescu A.M. Elsevier New York, NY, USA 2017 Chapter 9 223 259 978-0-323-52733-0 

  62. 62. Rafique M. Sadaf I. Rafique M.S. Tahir M.B. A review on green synthesis of silver nanoparticles and their applications Artif. Cells Nanomed. Biotechnol. 2017 45 1272 1291 10.1080/21691401.2016.1241792 27825269 

  63. 63. Ramanathan S. Gopinath S.C.B. Potentials in synthesizing nanostructured silver particles Microsyst. Technol. 2017 23 4345 4357 10.1007/s00542-017-3382-0 

  64. 64. Siddiqi K.S. Husen A. Rao R.A.K. A review on biosynthesis of silver nanoparticles and their biocidal properties J. Nanobiotechnol. 2018 16 14 10.1186/s12951-018-0334-5 29452593 

  65. 65. Syafiuddin A. Salmiati Salim M.R. Kueh A.B.H. Hadibarata T. Nur H. A Review of silver nanoparticles: Research trends, global consumption, synthesis, properties, and future challenges J. Chin. Chem. Soc. 2017 64 732 756 10.1002/jccs.201700067 

  66. 66. Khan S.U. Saleh T.A. Wahab A. Khan M.H.U. Khan D. Khan W.U. Rahim A. Kamal S. Khan F.U. Fahad S. Nanosilver: New Ageless and Versatile Biomedical Therapeutic Scaffold Available online: https://www.dovepress.com/nanosilver-new-ageless-and-versatile-biomedical-therapeutic-scaffold-peer-reviewed-fulltext-article-IJN (accessed on 23 June 2018) 

  67. 67. Li Z. Wang Y. Yu Q. Significant parameters in the optimization of synthesis of silver nanoparticles by chemical reduction method J. Mater. Eng. Perform. 2010 19 252 256 10.1007/s11665-009-9486-7 

  68. 68. Ajitha B. Divya A. Kumar K.S. Reddy P.S. Synthesis of silver nanoparticles by soft chemical method: Effect of reducing agent concentration Proceedings of the International Conference on Advanced Nanomaterials Emerging Engineering Technologies Chennai, India 24–26 July 2013 7 10 

  69. 69. Xu G. Qiao X. Qiu X. Chen J. Preparation and characterization of stable monodisperse silver nanoparticles via photoreduction Colloids Surf. A Physicochem. Eng. Asp. 2008 320 222 226 10.1016/j.colsurfa.2008.01.056 

  70. 70. Afify T.A. Saleh H.H. Ali Z.I. Structural and morphological study of gamma-irradiation synthesized silver nanoparticles Polym. Compos. 2017 38 2687 2694 10.1002/pc.23866 

  71. 71. Eid M. Araby E. Bactericidal effect of poly(acrylamide/itaconic acid)–silver nanoparticles synthesized by gamma irradiation against pseudomonas aeruginosa Appl. Biochem. Biotechnol. 2013 171 469 487 10.1007/s12010-013-0357-1 23857355 

  72. 72. Fatema U.K. Rahman M.M. Islam M.R. Mollah M.Y.A. Susan M.A.B.H. Silver/poly(vinyl alcohol) nanocomposite film prepared using water in oil microemulsion for antibacterial applications J. Colloid Interface Sci. 2018 514 648 655 10.1016/j.jcis.2017.12.084 29310094 

  73. 73. An J. Luo Q. Li M. Wang D. Li X. Yin R. A facile synthesis of high antibacterial polymer nanocomposite containing uniformly dispersed silver nanoparticles Colloid Polym. Sci. 2015 293 1997 2008 10.1007/s00396-015-3589-5 

  74. 74. Thuc D.T. Huy T.Q. Hoang L.H. Tien B.C. Van Chung P. Thuy N.T. Le A.-T. Green synthesis of colloidal silver nanoparticles through electrochemical method and their antibacterial activity Mater. Lett. 2016 181 173 177 10.1016/j.matlet.2016.06.008 

  75. 75. Yin B. Ma H. Wang S. Chen S. Electrochemical Synthesis of silver nanoparticles under protection of poly( N -vinylpyrrolidone) J. Phys. Chem. B 2003 107 8898 8904 10.1021/jp0349031 

  76. 76. Cioffi N. Colaianni L. Pilolli R. Calvano C. Palmisano F. Zambonin P. Silver nanofractals: Electrochemical synthesis, XPS characterization and application in LDI-MS Anal. Bioanal. Chem. 2009 394 1375 1383 10.1007/s00216-009-2820-y 19452142 

  77. 77. Baker C. Pradhan A. Pakstis L. Pochan D.J. Shah S.I. Synthesis and antibacterial properties of silver nanoparticles J. Nanosci. Nanotechnol. 2005 5 244 249 10.1166/jnn.2005.034 15853142 

  78. 78. Velmurugan P. Iydroose M. Mohideen M.H.A.K. Mohan T.S. Cho M. Oh B.-T. Biosynthesis of silver nanoparticles using Bacillus subtilis EWP-46 cell-free extract and evaluation of its antibacterial activity Bioprocess Biosyst. Eng. 2014 37 1527 1534 10.1007/s00449-014-1124-6 24569955 

  79. 79. Rajeshkumar S. Bharath L.V. Mechanism of plant-mediated synthesis of silver nanoparticles—A review on biomolecules involved, characterisation and antibacterial activity Chemico-Biol. Interact. 2017 273 219 227 10.1016/j.cbi.2017.06.019 28647323 

  80. 80. Terenteva E.A. Apyari V.V. Dmitrienko S.G. Zolotov Y.A. Formation of plasmonic silver nanoparticles by flavonoid reduction: A comparative study and application for determination of these substances Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2015 151 89 95 10.1016/j.saa.2015.06.049 26125987 

  81. 81. Abou El-Nour K.M.M. Eftaiha A. Al-Warthan A. Ammar R.A.A. Synthesis and applications of silver nanoparticles Arab. J. Chem. 2010 3 135 140 10.1016/j.arabjc.2010.04.008 

  82. 82. Iravani S. Korbekandi H. Mirmohammadi S.V. Zolfaghari B. Synthesis of silver nanoparticles: Chemical, physical and biological methods Res. Pharm. Sci. 2014 9 385 406 26339255 

  83. 83. Jokar M. Rahman R.A. Study of silver ion migration from melt-blended and layered-deposited silver polyethylene nanocomposite into food simulants and apple juice Food Addit. Contamin. Part A 2014 31 734 742 10.1080/19440049.2013.878812 24392748 

  84. 84. Cao X.L. Cheng C. Ma Y.L. Zhao C.S. Preparation of silver nanoparticles with antimicrobial activities and the researches of their biocompatibilities J. Mater. Sci. 2010 21 2861 2868 10.1007/s10856-010-4133-2 20652373 

  85. 85. Rehan M. El-Naggar M.E. Mashaly H.M. Wilken R. Nanocomposites based on chitosan/silver/clay for durable multi-functional properties of cotton fabrics Carbohydr. Polym. 2018 182 29 41 10.1016/j.carbpol.2017.11.007 29279123 

  86. 86. Regiel-Futyra A. Kus-Liśkiewicz M. Sebastian V. Irusta S. Arruebo M. Kyzioł A. Stochel G. Development of noncytotoxic silver-chitosan nanocomposites for efficient control of biofilm forming microbes RSC Adv. 2017 7 52398 52413 10.1039/C7RA08359A 29308194 

  87. 87. El-Naggar M.E. Shaheen T.I. Fouda M.M.G. Hebeish A.A. Eco-friendly microwave-assisted green and rapid synthesis of well-stabilized gold and core-shell silver-gold nanoparticles Carbohydr. Polym. 2016 136 1128 1136 10.1016/j.carbpol.2015.10.003 26572455 

  88. 88. Pollini M. Paladini F. Sannino A. Picca R.A. Sportelli M.C. Cioffi N. Nitti M.A. Valentini M. Valentini A. Nonconventional routes to silver nanoantimicrobials: Technological issues, bioactivity, and applications Nanotechnology in Diagnosis, Treatment and Prophylaxis of Infectious Diseases Kon M.R. Academic Press Boston, FL, USA 2015 Chapter 6 87 105 978-0-12-801317-5 

  89. 89. Bhoir S.A. Chawla S.P. Silver nanoparticles synthesized using mint extract and their application in chitosan/gelatin composite packaging film Int. J. Nanosci. 2016 16 1650022 10.1142/S0219581X16500228 

  90. 90. Amendola V. Meneghetti M. Laser ablation synthesis in solution and size manipulation of noble metal nanoparticles Phys. Chem. Chem. Phys. 2009 11 3805 3821 10.1039/b900654k 19440607 

  91. 91. Szegedi Á. Popova M. Valyon J. Guarnaccio A. Stefanis A.D. Bonis A.D. Orlando S. Sansone M. Teghil R. Santagata A. Comparison of silver nanoparticles confined in nanoporous silica prepared by chemical synthesis and by ultra-short pulsed laser ablation in liquid Appl. Phys. A 2014 117 55 62 10.1007/s00339-014-8499-8 

  92. 92. Zhang J. Chaker M. Ma D. Pulsed laser ablation based synthesis of colloidal metal nanoparticles for catalytic applications J. Colloid Interface Sci. 2017 489 138 149 10.1016/j.jcis.2016.07.050 27554172 

  93. 93. Walter J.G. Petersen S. Stahl F. Scheper T. Barcikowski S. Laser ablation-based one-step generation and bio-functionalization of gold nanoparticles conjugated with aptamers J. Nanobiotechnol. 2010 8 21 10.1186/1477-3155-8-21 20731831 

  94. 94. Jendrzej S. Gökce B. Epple M. Barcikowski S. How size determines the value of gold: Economic aspects of wet chemical and laser-based metal colloid synthesis ChemPhysChem 2017 18 1012 1019 10.1002/cphc.201601139 28092122 

  95. 95. Barcikowski S. Menéndez-Manjón A. Chichkov B. Brikas M. Račiukaitis G. Generation of nanoparticle colloids by picosecond and femtosecond laser ablations in liquid flow Appl. Phys. Lett. 2007 91 083113 10.1063/1.2773937 

  96. 96. Sajti C.L. Sattari R. Chichkov B.N. Barcikowski S. Gram scale synthesis of pure ceramic nanoparticles by laser ablation in liquid J. Phys. Chem. C 2010 114 2421 2427 10.1021/jp906960g 

  97. 97. Streubel R. Barcikowski S. Gökce B. Continuous multigram nanoparticle synthesis by high-power, high-repetition-rate ultrafast laser ablation in liquids Opt. Lett. 2016 41 1486 1489 10.1364/OL.41.001486 27192268 

  98. 98. Abdelhamid H.N. Wu H.-F. Proteomics analysis of the mode of antibacterial action of nanoparticles and their interactions with proteins Trends Anal. Chem. 2015 65 30 46 10.1016/j.trac.2014.09.010 

  99. 99. Ahmad V. Jamal Q.M.S. Shukla A.K. Alam J. Imran A. Abaza U.M. Bacilli as biological nano-factories intended for synthesis of silver nanoparticles and its application in human welfare J. Clust. Sci. 2017 28 1775 1802 10.1007/s10876-017-1206-0 

  100. 100. Riaz Ahmed K.B. Nagy A.M. Brown R.P. Zhang Q. Malghan S.G. Goering P.L. Silver nanoparticles: Significance of physicochemical properties and assay interference on the interpretation of in vitro cytotoxicity studies Toxicology In Vitro 2017 38 179 192 10.1016/j.tiv.2016.10.012 27816503 

  101. 101. Durán N. Durán M. de Jesus M.B. Seabra A.B. Fávaro W.J. Nakazato G. Silver nanoparticles: A new view on mechanistic aspects on antimicrobial activity Nanomedicine 2016 12 789 799 10.1016/j.nano.2015.11.016 26724539 

  102. 102. Halbus A.F. Horozov T.S. Paunov V.N. Colloid particle formulations for antimicrobial applications Adv. Colloid Interface Sci. 2017 249 134 148 10.1016/j.cis.2017.05.012 28528626 

  103. 103. Kędziora A. Speruda M. Krzyżewska E. Rybka J. Łukowiak A. Bugla-Płoskońska G. Similarities and differences between silver ions and silver in nanoforms as antibacterial agents Int. J. Mol. Sci. 2018 19 444 10.3390/ijms19020444 29393866 

  104. 104. Khalandi B. Asadi N. Milani M. Davaran S. Abadi A.J.N. Abasi E. Akbarzadeh A. A review on potential role of silver nanoparticles and possible mechanisms of their actions on bacteria Drug Res. 2017 11 70 76 10.1055/s-0042-113383 27824432 

  105. 105. Mosier-Boss P.A. Review on SERS of bacteria Biosensors 2017 7 51 10.3390/bios7040051 29137201 

  106. 106. Suresh K. Krishna S. Govender P. Adam J.K Nano silver particles in biomedical and clinical applications: Review J. Pure Appl. Microbiol. 2015 9 103 112 

  107. 107. Natan M. Banin E. From Nano to Micro: Using nanotechnology to combat microorganisms and their multidrug resistance FEMS Microbiol. Rev. 2017 41 302 322 10.1093/femsre/fux003 28419240 

  108. 108. Pareek V. Gupta R. Panwar J. Do physico-chemical properties of silver nanoparticles decide their interaction with biological media and bactericidal action? A review Mater. Sci. Eng. C 2018 90 739 749 10.1016/j.msec.2018.04.093 29853145 

  109. 109. Rai M. Ingle A.P. Pandit R. Paralikar P. Gupta I. Chaud M.V. dos Santos C.A. Broadening the spectrum of small-molecule antibacterials by metallic nanoparticles to overcome microbial resistance Int. J. Pharm. 2017 532 139 148 10.1016/j.ijpharm.2017.08.127 28870767 

  110. 110. Rai M. Deshmukh S.D. Ingle A.P. Gupta I.R. Galdiero M. Galdiero S. Metal nanoparticles: The protective nanoshield against virus infection Crit. Rev. Microbiol. 2016 42 46 56 10.3109/1040841X.2013.879849 24754250 

  111. 111. Rudramurthy G.R. Swamy M.K. Sinniah U.R. Ghasemzadeh A. Nanoparticles: Alternatives against drug-resistant pathogenic microbes Molecules 2016 21 836 10.3390/molecules21070836 27355939 

  112. 112. Tashi T. Gupta N.V. Mbuya V.B. Silver nanoparticles: Synthesis, mechanism of antimicrobial action, characterization, medical applications, and toxicity effects J. Chem. Pharm. Res. 2016 8 526 537 

  113. 113. Zhang X.-F. Shen W. Gurunathan S. Silver nanoparticle-mediated cellular responses in various cell lines: An in vitro model Int. J. Mol. Sci. 2016 17 1603 10.3390/ijms17101603 27669221 

  114. 114. Zhang H. Wu M. Sen A. Silver nanoparticle antimicrobials and related materials Nano-Antimicrobials Springer Berlin/Heidelberg, Germany 2012 3 45 978-3-642-24427-8 

  115. 115. Nomiya K. Takahashi S. Noguchi R. Nemoto S. Takayama T. Oda M. Synthesis and characterization of water-soluble silver(I) complexes with l-Histidine (H2his) and (S)-(−)-2-Pyrrolidone-5-carboxylic Acid (H2pyrrld) showing a wide spectrum of effective antibacterial and antifungal activities. Crystal structures of chiral helical polymers [Ag(Hhis)]n and {[Ag(Hpyrrld)]2}n in the solid state Inorg. Chem. 2000 39 3301 3311 10.1021/ic990526o 11196868 

  116. 116. AshaRani P.V. Low Kah Mun G. Hande M.P. Valiyaveettil S. Cytotoxicity and genotoxicity of silver nanoparticles in human cells ACS Nano 2009 3 279 290 10.1021/nn800596w 19236062 

  117. 117. Hajipour M.J. Fromm K.M. Akbar Ashkarran A. Jimenez de Aberasturi D. De Larramendi I.R. Rojo T. Serpooshan V. Parak W.J. Mahmoudi M. Antibacterial properties of nanoparticles Trends Biotechnol. 2012 30 499 511 10.1016/j.tibtech.2012.06.004 22884769 

  118. 118. McShan D. Ray P.C. Yu H. Molecular toxicity mechanism of nanosilver J. Food Drug Anal. 2014 22 116 127 10.1016/j.jfda.2014.01.010 24673909 

  119. 119. Li W.-R. Sun T.-L. Zhou S.-L. Ma Y.-K. Shi Q.-S. Xie X.-B. Huang X.-M. A comparative analysis of antibacterial activity, dynamics, and effects of silver ions and silver nanoparticles against four bacterial strains Int. Biodeterior. Biodegrad. 2017 123 304 310 10.1016/j.ibiod.2017.07.015 

  120. 120. Navarro E. Piccapietra F. Wagner B. Marconi F. Kaegi R. Odzak N. Sigg L. Behra R. Toxicity of silver nanoparticles to chlamydomonas reinhardtii Environ. Sci. Technol. 2008 42 8959 8964 10.1021/es801785m 19192825 

  121. 121. Gomaa E.Z. Silver nanoparticles as an antimicrobial agent: A case study on Staphylococcus aureus and Escherichia coli as models for Gram-positive and Gram-negative bacteria J. Gen. Appl. Microbiol. 2017 63 36 43 10.2323/jgam.2016.07.004 28123131 

  122. 122. Pandey J.K. Swarnkar R.K. Soumya K.K. Dwivedi P. Singh M.K. Sundaram S. Gopal R. Silver nanoparticles synthesized by pulsed laser ablation: As a potent antibacterial agent for human enteropathogenic gram-positive and gram-negative bacterial strains Appl. Biochem. Biotechnol. 2014 174 1021 1031 10.1007/s12010-014-0934-y 24801405 

  123. 123. Pazos-Ortiz E. Roque-Ruiz J.H. Hinojos-Márquez E.A. López-Esparza J. Donohué-Cornejo A. Cuevas-González J.C. Espinosa-Cristóbal L.F. Reyes-López S.Y. Dose-dependent antimicrobial activity of silver nanoparticles on polycaprolactone fibers against gram-positive and gram-negative bacteria J. Nanomater. 2017 2017 4752314 10.1155/2017/4752314 

  124. 124. Rai M.K. Deshmukh S.D. Ingle A.P. Gade A.K. Silver nanoparticles: The powerful nanoweapon against multidrug-resistant bacteria J. Appl. Microbiol. 2012 112 841 852 10.1111/j.1365-2672.2012.05253.x 22324439 

  125. 125. Feng Q.L. Wu J. Chen G.Q. Cui F.Z. Kim T.N. Kim J.O. A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus J. Biomed. Mater. Res. 2000 52 662 668 10.1002/1097-4636(20001215)52:4 3.0.CO;2-3 11033548 

  126. 126. Sondi I. Salopek-Sondi B. Silver nanoparticles as antimicrobial agent: A case study on E. coli as a model for Gram-negative bacteria J. Colloid Interface Sci. 2004 275 177 182 10.1016/j.jcis.2004.02.012 15158396 

  127. 127. Pal S. Tak Y.K. Song J.M. Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? a study of the gram-negative bacterium Escherichia coli Appl. Environ. Microbiol. 2007 73 1712 1720 10.1128/AEM.02218-06 17261510 

  128. 128. Butkus M.A. Labare M.P. Starke J.A. Moon K. Talbot M. Use of aqueous silver to enhance inactivation of coliphage MS-2 by UV disinfection Appl. Environ. Microbiol. 2004 70 2848 2853 10.1128/AEM.70.5.2848-2853.2004 15128542 

  129. 129. Morones J.R. Elechiguerra J.L. Camacho A. Holt K. Kouri J.B. Ramírez J.T. Yacaman M.J. The bactericidal effect of silver nanoparticles Nanotechnology 2005 16 2346 2353 10.1088/0957-4484/16/10/059 20818017 

  130. 130. Yamanaka M. Hara K. Kudo J. Bactericidal actions of a silver ion solution on Escherichia coli , studied by energy-filtering transmission electron microscopy and proteomic analysis Appl. Environ. Microbiol. 2005 71 7589 7593 10.1128/AEM.71.11.7589-7593.2005 16269810 

  131. 131. Ingle A. Gade A. Pierrat S. Sonnichsen C. Rai M. Mycosynthesis of Silver Nanoparticles Using the Fungus Fusarium acuminatum and Its Activity Against Some Human Pathogenic Bacteria Available online: http://www.eurekaselect.com/66921/article (accessed on 22 June 2018) 

  132. 132. Gajbhiye M. Kesharwani J. Ingle A. Gade A. Rai M. Fungus-mediated synthesis of silver nanoparticles and their activity against pathogenic fungi in combination with fluconazole Nanomedicine 2009 5 382 386 10.1016/j.nano.2009.06.005 19616127 

  133. 133. Birla S.S. Tiwari V.V. Gade A.K. Ingle A.P. Yadav A.P. Rai M.K. Fabrication of silver nanoparticles by Phoma glomerata and its combined effect against Escherichia coli , Pseudomonas aeruginosa and Staphylococcus aureus Letters Appl. Microbiol. 2009 48 173 179 10.1111/j.1472-765X.2008.02510.x 19141039 

  134. 134. Govindaraju K. Tamilselvan S. Kiruthiga V. Singaravelu G. Biogenic silver nanoparticles by Solanum torvum and their promising antimicrobial activity J. Biopestic. 2010 3 394 399 

  135. 135. Namasivayam S.K.R. Evaluation of anti bacterial activity of biocompatible polymer chitosan coated biogenic silver nanoparticles synthesized from Klebsiella ornithinolytica BioMedRx 2013 1 459 563 

  136. 136. El Badawy A.M. Silva R.G. Morris B. Scheckel K.G. Suidan M.T. Tolaymat T.M. Surface charge-dependent toxicity of silver nanoparticles Environ. Sci. Technol. 2011 45 283 287 10.1021/es1034188 21133412 

  137. 137. Jeong Y. Lim D.W. Choi J. Assessment of size-dependent antimicrobial and cytotoxic properties of silver nanoparticles Adv. Mater. Sci. Eng. 2014 2014 763807 10.1155/2014/763807 

  138. 138. Kumari M. Pandey S. Giri V.P. Bhattacharya A. Shukla R. Mishra A. Nautiyal C.S. Tailoring shape and size of biogenic silver nanoparticles to enhance antimicrobial efficacy against MDR bacteria Microb. Pathog. 2017 105 346 355 10.1016/j.micpath.2016.11.012 27889528 

  139. 139. Zook J.M. Halter M.D. Cleveland D. Long S.E. Disentangling the effects of polymer coatings on silver nanoparticle agglomeration, dissolution, and toxicity to determine mechanisms of nanotoxicity J. Nanopart. Res. 2012 14 1165 10.1007/s11051-012-1165-1 

  140. 140. Störmer A. Bott J. Kemmer D. Franz R. Critical review of the migration potential of nanoparticles in food contact plastics Trends Food Sci. Technol. 2017 63 39 50 10.1016/j.tifs.2017.01.011 

  141. 141. Carlson C. Hussain S.M. Schrand A.M. Braydich-Stolle L. Hess K.L. Jones R.L. Schlager J.J. Unique cellular interaction of silver nanoparticles: Size-dependent generation of reactive oxygen species J. Phys. Chem. B 2008 112 13608 13619 10.1021/jp712087m 18831567 

  142. 142. Aueviriyavit S. Phummiratch D. Maniratanachote R. Mechanistic study on the biological effects of silver and gold nanoparticles in Caco-2 cells—Induction of the Nrf2/HO-1 pathway by high concentrations of silver nanoparticles Toxicol. Lett. 2014 224 73 83 10.1016/j.toxlet.2013.09.020 24126012 

  143. 143. Singh R.P. Bala N. Comparative studies of cold and thermal sprayed hydroxyapatite coatings for biomedical applications—A review Biomaterials Science: Processing, Properties and Applications II Wiley-Blackwell Hoboken, NJ, USA 2012 249 259 978-1-118-51146-6 

  144. 144. Wang J. Rahman M.F. Duhart H.M. Newport G.D. Patterson T.A. Murdock R.C. Hussain S.M. Schlager J.J. Ali S.F. Expression changes of dopaminergic system-related genes in PC12 cells induced by manganese, silver, or copper nanoparticles NeuroToxicology 2009 30 926 933 10.1016/j.neuro.2009.09.005 19781568 

  145. 145. Park M.V.D.Z. Neigh A.M. Vermeulen J.P. de la Fonteyne L.J.J. Verharen H.W. Briedé J.J. van Loveren H. de Jong W.H. The effect of particle size on the cytotoxicity, inflammation, developmental toxicity and genotoxicity of silver nanoparticles Biomaterials 2011 32 9810 9817 10.1016/j.biomaterials.2011.08.085 21944826 

  146. 146. Perito B. Giorgetti E. Marsili P. Muniz-Miranda M. Antibacterial activity of silver nanoparticles obtained by pulsed laser ablation in pure water and in chloride solution Beilstein J. Nanotechnol. 2016 7 465 473 10.3762/bjnano.7.40 27335737 

  147. 147. Agnihotri S. Mukherji S. Mukherji S. Size-controlled silver nanoparticles synthesized over the range 5–100 nm using the same protocol and their antibacterial efficacy RSC Adv. 2013 4 3974 3983 10.1039/C3RA44507K 

  148. 148. Lu Z. Rong K. Li J. Yang H. Chen R. Size-dependent antibacterial activities of silver nanoparticles against oral anaerobic pathogenic bacteria J. Mater. Sci. 2013 24 1465 1471 10.1007/s10856-013-4894-5 23440430 

  149. 149. Martínez-Castañón G.A. Niño-Martínez N. Martínez-Gutierrez F. Martínez-Mendoza J.R. Ruiz F. Synthesis and antibacterial activity of silver nanoparticles with different sizes J. Nanopart. Res. 2008 10 1343 1348 10.1007/s11051-008-9428-6 

  150. 150. Kőrösi L. Rodio M. Dömötör D. Kovács T. Papp S. Diaspro A. Intartaglia R. Beke S. Ultrasmall, ligand-free Ag nanoparticles with high antibacterial activity prepared by pulsed laser ablation in liquid J. Chem. 2016 2016 4143560 10.1155/2016/4143560 

  151. 151. Korshed P. Li L. Liu Z. Wang T. The molecular mechanisms of the antibacterial effect of picosecond laser generated silver nanoparticles and their toxicity to human cells PLoS ONE 2016 11 e0160078 10.1371/journal.pone.0160078 27575485 

  152. 152. Zafar N. Shamaila S. Nazir J. Sharif R. Shahid Rafique M. Ul-Hasan J. Ammara S. Khalid H. Antibacterial action of chemically synthesized and laser generated silver nanoparticles against human pathogenic bacteria J. Mater. Sci. Technol. 2016 32 721 728 10.1016/j.jmst.2016.05.009 

  153. 153. Alam M.N. Roy N. Mandal D. Begum N.A. Green chemistry for nanochemistry: Exploring medicinal plants for the biogenic synthesis of metal NPs with fine-tuned properties RSC Adv. 2013 3 11935 11956 10.1039/c3ra23133j 

  154. 154. Sportelli M.C. Picca R.A. Cioffi N. Recent advances in the synthesis and characterization of nano-antimicrobials Trends Anal. Chem. 2016 84 131 138 10.1016/j.trac.2016.05.002 

  155. 155. Shih C.-Y. Streubel R. Heberle J. Letzel A. Shugaev M.V. Wu C. Schmidt M. Gökce B. Barcikowski S. Zhigilei L.V. Two mechanisms of nanoparticle generation in picosecond laser ablation in liquids: The origin of the bimodal size distribution Nanoscale 2018 10 6900 6910 10.1039/C7NR08614H 29561559 

  156. 156. Zhang D. Gökce B. Barcikowski S. Laser synthesis and processing of colloids: Fundamentals and applications Chem. Rev. 2017 117 3990 4103 10.1021/acs.chemrev.6b00468 28191931 

  157. 157. Simakin A.V. Voronov V.V. Shafeev G.A. Brayner R. Bozon-Verduraz F. Nanodisks of Au and Ag produced by laser ablation in liquid environment Chem. Phys. Lett. 2001 348 182 186 10.1016/S0009-2614(01)01136-8 

  158. 158. Palazzo G. Valenza G. Dell’Aglio M. De Giacomo A. On the stability of gold nanoparticles synthesized by laser ablation in liquids J. Colloid Interface Sci. 2017 489 47 56 10.1016/j.jcis.2016.09.017 27692858 

  159. 159. Mafuné F. Kohno J. Takeda Y. Kondow T. Sawabe H. Structure and stability of silver nanoparticles in aqueous solution produced by laser ablation J. Phys. Chem. B 2000 104 8333 8337 10.1021/jp001803b 

  160. 160. Mafuné F. Kondow T. Selective laser fabrication of small nanoparticles and nano-networks in solution by irradiation of UV pulsed laser onto platinum nanoparticles Chem. Phys. Lett. 2004 383 343 347 10.1016/j.cplett.2003.10.149 

  161. 161. Mafuné F. Kohno J. Takeda Y. Kondow T. Sawabe H. Formation and size control of silver nanoparticles by laser ablation in aqueous solution J. Phys. Chem. B 2000 104 9111 9117 10.1021/jp001336y 

  162. 162. Kruusing A. Underwater and water-assisted laser processing: Part 1—General features, steam cleaning and shock processing Opt. Lasers Eng. 2004 41 307 327 10.1016/S0143-8166(02)00142-2 

  163. 163. Oseguera-Galindo D.O. Martínez-Benítez A. Chávez-Chávez A. Gómez-Rosas G. Pérez-Centeno A. Santana-Aranda M.A. Effects of the confining solvent on the size distribution of silver NPs by laser ablation J. Nanopart. Res. 2012 14 1133 10.1007/s11051-012-1133-9 

  164. 164. Werner D. Hashimoto S. Tomita T. Matsuo S. Makita Y. Examination of silver nanoparticle fabrication by pulsed-laser ablation of flakes in primary alcohols J. Phys. Chem. C 2008 112 1321 1329 10.1021/jp075401g 

  165. 165. Moura C.G. Pereira R.S.F. Andritschky M. Lopes A.L.B. de Freitas Grilo J.P. do Nascimento R.M. Silva F.S. Effects of laser fluence and liquid media on preparation of small Ag nanoparticles by laser ablation in liquid Opt. Laser Technol. 2017 97 20 28 10.1016/j.optlastec.2017.06.007 

  166. 166. Amendola V. Meneghetti M. What controls the composition and the structure of nanomaterials generated by laser ablation in liquid solution? Phys. Chem. Chem. Phys. 2013 15 3027 3046 10.1039/C2CP42895D 23165724 

  167. 167. Kalus M.-R. Bärsch N. Streubel R. Gökce E. Barcikowski S. Gökce B. How persistent microbubbles shield nanoparticle productivity in laser synthesis of colloids—Quantification of their volume, dwell dynamics, and gas composition Phys. Chem. Chem. Phys. 2017 19 7112 7123 10.1039/C6CP07011F 28229137 

  168. 168. Tajdidzadeh M. Azmi B.Z. Yunus W.M.M. Talib Z.A. Sadrolhosseini A.R. Karimzadeh K. Gene S.A. Dorraj M. Synthesis of silver nanoparticles dispersed in various aqueous media using laser ablation Sci. World J. 2014 2014 324921 10.1155/2014/324921 25295298 

  169. 169. Hao E. Schatz G.C. Electromagnetic fields around silver nanoparticles and dimers J. Chem. Phys. 2003 120 357 366 10.1063/1.1629280 15267296 

  170. 170. Al-Azawi M.A. Bidin N. Bououdina M. Abbas K.N. Al-Asedy H.J. Ahmed O.H. Thahe A.A. The effects of the ambient liquid medium on the ablation efficiency, size and stability of silver nanoparticles prepared by pulse laser ablation in liquid technique J. Teknol. 2016 78 7 11 10.11113/jt.v78.7456 

  171. 171. Ganeev R.A. Baba M. Ryasnyanskii A.I. Suzuki M. Kuroda H. Laser ablation of silver in different liquids: Optical and nonlinear optical properties of silver nanoparticles Opt. Spectrosc. 2005 99 668 676 10.1134/1.2113389 

  172. 172. Hamad A. Li L. Liu Z. A comparison of the characteristics of nanosecond, picosecond and femtosecond lasers generated Ag, TiO 2 and Au nanoparticles in deionised water Appl. Phys. A 2015 120 1247 1260 10.1007/s00339-015-9326-6 

  173. 173. Tsuji T. Kakita T. Tsuji M. Preparation of nano-size particles of silver with femtosecond laser ablation in water Appl. Surface Sci. 2003 206 314 320 10.1016/S0169-4332(02)01230-8 

  174. 174. Hamad A. Li L. Liu Z. Comparison of characteristics of selected metallic and metal oxide nanoparticles produced by picosecond laser ablation at 532 and 1064 nm wavelengths Appl. Phys. A 2016 122 904 10.1007/s00339-016-0426-8 

  175. 175. Solati E. Mashayekh M. Dorranian D. Effects of laser pulse wavelength and laser fluence on the characteristics of silver nanoparticle generated by laser ablation Appl. Phys. A 2013 112 689 694 10.1007/s00339-013-7812-2 

  176. 176. Tsuji T. Iryo K. Nishimura Y. Tsuji M. Preparation of metal colloids by a laser ablation technique in solution: Influence of laser wavelength on the ablation efficiency (II) J. Photochem. Photobiol. A Chem. 2001 145 201 207 10.1016/S1010-6030(01)00583-4 

  177. 177. Tsuji T. Iryo K. Watanabe N. Tsuji M. Preparation of silver nanoparticles by laser ablation in solution: Influence of laser wavelength on particle size Appl. Surf. Sci. 2002 202 80 85 10.1016/S0169-4332(02)00936-4 

  178. 178. Reich S. Schönfeld P. Letzel A. Kohsakowski S. Olbinado M. Gökce B. Barcikowski S. Plech A. Fluence threshold behaviour on ablation and bubble formation in pulsed laser ablation in liquids ChemPhysChem 2017 18 1084 1090 10.1002/cphc.201601198 28029740 

  179. 179. Dorranian D. Tajmir S. Khazanehfar F. Effect of laser fluence on the characteristics of Ag nanoparticles produced by laser ablation Soft Nanosci. Lett. 2013 3 93 100 10.4236/snl.2013.34017 

  180. 180. Mahdieh M.H. Fattahi B. Size properties of colloidal nanoparticles produced by nanosecond pulsed laser ablation and studying the effects of liquid medium and laser fluence Appl. Surf. Sci. 2015 329 47 57 10.1016/j.apsusc.2014.12.069 

  181. 181. Nikolov A.S. Nedyalkov N.N. Nikov R.G. Atanasov P.A. Alexandrov M.T. Karashanova D.B. Investigation of Ag nanoparticles produced by nanosecond pulsed laser ablation in water Appl. Phys. A 2012 109 315 322 10.1007/s00339-012-7094-0 

  182. 182. Nikolov A.S. Nedyalkov N.N. Nikov R.G. Atanasov P.A. Alexandrov M.T. Characterization of Ag and Au nanoparticles created by nanosecond pulsed laser ablation in double distilled water Appl. Surf. Sci. 2011 257 5278 5282 10.1016/j.apsusc.2010.10.146 

  183. 183. Valverde-Alva M.A. García-Fernández T. Villagrán-Muniz M. Sánchez-Aké C. Castañeda-Guzmán R. Esparza-Alegría E. Sánchez-Valdés C.F. Llamazares J.L.S. Herrera C.E.M. Synthesis of silver nanoparticles by laser ablation in ethanol: A pulsed photoacoustic study Appl. Surf. Sci. 2015 355 341 349 10.1016/j.apsusc.2015.07.133 

  184. 184. Zamiri R. Zakaria A. Ahangar H.A. Darroudi M. Zamiri G. Rizwan Z. Drummen G.P.C. The effect of laser repetition rate on the LASiS synthesis of biocompatible silver nanoparticles in aqueous starch solution Int. J. Nanomed. 2013 8 233 244 10.2147/IJN.S36036 

  185. 185. Menéndez-Manjón A. Barcikowski S. Hydrodynamic size distribution of gold nanoparticles controlled by repetition rate during pulsed laser ablation in water Appl. Surf. Sci. 2011 257 4285 4290 10.1016/j.apsusc.2010.12.037 

  186. 186. Hosseini H. Shojaee-Aliabadi S. Hosseini S.M. Mirmoghtadaie L. Nanoantimicrobials in Food Industry Nanotechnology Applications in Food Oprea A.E. Grumezescu A.M. Academic Press Cambridge, MA, USA 2017 Chapter 11 223 243 978-0-12-811942-6 

  187. 187. Costa C. Conte A. Alessandro M. Nobile D. Use of Metal Nanoparticles for Active Packaging Applications Antimicrobial Food Packaging Barros-Velázquez J. Academic Press San Diego, CA, USA 2016 Chapter 31 399 406 978-0-12-800723-5 

  188. 188. Costa C. Conte A. Buonocore G.G. Del Nobile M.A. Antimicrobial silver-montmorillonite nanoparticles to prolong the shelf life of fresh fruit salad Int. J. Food Microbiol. 2011 148 164 167 10.1016/j.ijfoodmicro.2011.05.018 21684619 

  189. 189. Sivakumar P. Sivakumar P. Anbarasu K. Pandian K. Renganathan S. Synthesis of silver nanorods from food industrial waste and their application in improving the keeping quality of milk Ind. Eng. Chem. Res. 2013 52 17676 17681 10.1021/ie4009327 

  190. 190. Maynard A. The Nanotechnology Consumer Products Inventory Woodrow Wilson International Center for Scholars Washington, DC, USA 2006 Volume 10 

  191. 191. Bouwmeester H. Dekkers S. Noordam M. Hagens W. Bulder A. De Heer C. ten Voorde S.E.C.G. Wijnhoven S. Sips A. Health Impact of Nanotechnologies in Food Production Netherlands National Institute for Public Health and the Environment Bilthoven, The Netherlands 2007 

  192. 192. Von Goetz N. Fabricius L. Glaus R. Weitbrecht V. Günther D. Hungerbühler K. Migration of silver from commercial plastic food containers and implications for consumer exposure assessment Food Addit. Contamin. Part A 2013 30 612 620 10.1080/19440049.2012.762693 23406534 

  193. 193. Echegoyen Y. Nerín C. Nanoparticle release from nano-silver antimicrobial food containers Food Chem. Toxicol. 2013 62 16 22 10.1016/j.fct.2013.08.014 23954768 

  194. 194. Nerin C. Silva F. Manso S. Becerril R. The downside of antimicrobial packaging: Migration of packaging elements into food Antimicrobial Food Packaging Barros-Velázquez J. Academic Press San Diego, CA, USA 2016 Chapter 6 81 93 978-0-12-800723-5 

  195. 195. Biji K.B. Ravishankar C.N. Mohan C.O. Gopal T.K.S. Smart packaging systems for food applications: A review J. Food Sci. Technol. 2015 52 6125 6135 10.1007/s13197-015-1766-7 26396360 

  196. 196. Castro-Mayorga J.L. Martínez-Abad A. Fabra M.F. Lagarón J.M. Ocio M.J. Sánchez G. Silver-Based Antibacterial and Virucide Biopolymers: Usage and potential in antimicrobial packaging Antimicrobial Food Packaging Barros-Velázquez J. Academic Press San Diego, CA, USA 2016 Chapter 32 407 416 978-0-12-800723-5 

  197. 197. European Food Safety Authority (EFSA) Opinion of the Scientific Panel on food additives, flavourings, processing aids and materials in contact with food (AFC) on a request related to a 17th list of substances for food contact materials: Opinion of the scientific panel on food additives, flavourings, processing aids and materials in contact with food (AFC) on a request related to a 17t EFSA J. 2008 6 601 10.2903/j.efsa.2008.601 

  198. 198. Ranadheera C.S. Prasanna P.H.P. Vidanarachchi J.K. McConchie R. Naumovski N. Mellor D. Nanotechnology in Microbial Food Safety Nanotechnology Applications in Food Oprea A.E. Grumezescu A.M. Academic Press San Diego, CA, USA 2017 Chapter 12 245 265 978-0-12-811942-6 

  199. 199. Rossi M. Cubadda F. Dini L. Terranova M.L. Aureli F. Sorbo A. Passeri D. Scientific basis of nanotechnology, implications for the food sector and future trends Trends Food Sci. Technol. 2014 40 127 148 10.1016/j.tifs.2014.09.004 

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로