$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Production of carbonized micro-patterns by photolithography and pyrolysis 원문보기

Precision engineering, v.55, 2019년, pp.137 - 143  

Ginestra, P.S. (Dept. of Mechanical and Industrial Engineering, University of Brescia) ,  Madou, M. (Dept. of Mechanical and Aerospace Engineering, University of California S3231 Engineering Gateway Mail Code: 3975) ,  Ceretti, E. (Dept. of Mechanical and Industrial Engineering, University of Brescia)

Abstract AI-Helper 아이콘AI-Helper

Abstract The preparation of carbon micro-patterns is reported in this paper. Different carbon micro-patterns were created using photolithography of the epoxy-based negative photoresist SU-8. Photoresist patterns were optimized in terms of resolution and aspect ratio and subsequently subjected to py...

Keyword

참고문헌 (55)

  1. Synth Met Shiny 234 29 2017 10.1016/j.synthmet.2017.10.009 Patterned water dispersible conducting polymer electrode in organic thin film transistor through a parylene lift-off process 

  2. ACS Nano Hao 5 2 1476 2011 10.1021/nn103319p Fabrication of patterned polymer nanowire arrays 

  3. Adv Mater Park 27 7583 2015 10.1002/adma.201501809 Review of patterned organic bioelectronic materials and their biomedical applications 

  4. Micromachines Martinez- Duarte 5 766 2014 10.3390/mi5030766 SU-8 photolithography as a toolbox for carbon MEMS 

  5. IBM JRes Dev Shaw 41 81 1997 10.1147/rd.411.0081 

  6. J Vac Sci Technol B Lee 13 3012 1995 10.1116/1.588297 Micromachining applications of a high resolution ultrathick photoresist 

  7. J Micromech Microeng Feng 13 80 2003 10.1088/0960-1317/13/1/312 Influence of processing conditions on the thermal and mechanical properties of SU8 negative photoresist coatings 

  8. Microsyst Technol Lorenz 4 143 1998 10.1007/s005420050118 Fabrication of photoplastic high-aspect ratio microparts and micromolds using SU-8 UV resist 

  9. J Microelectromech Syst Wang 14 2 348 2005 10.1109/JMEMS.2004.839312 A novel method for the fabrication of high-aspect ratio C-MEMS structures 

  10. J Mater Sci Pesin 37 1 2002 10.1023/A:1013100920130 Structure and properties of glass-like carbon 

  11. J Electrochem Soc Mardegan 160 132 2013 10.1149/2.107308jes Optimization of carbon electrodes derived from epoxy-based photoresist 

  12. J Electrochem Soc Park 152 136 2005 10.1149/1.2116707 Electrical properties and shrinkage of carbonized photoresist films and the implications for carbon microelectromechanical systems devices in conductive media 

  13. J Power Sources Genis 183 730 2008 10.1016/j.jpowsour.2008.05.065 Fabrication and characterization of three-dimensional carbon electrodes for lithium-ion batteries 

  14. Martinez-Duarte 231 2009 Microfluidics and nanofluidics handbook: fabrication, implementation and applications SU-8 photolithography and its impact on microfluidics 

  15. Electrophoresis Martinez-Duarte 32 2385 2001 10.1002/elps.201100059 A novel approach to dielectrophoresis using carbon electrodes 

  16. ACS Appl Mater Interfaces Sharma 4 1 34 2012 10.1021/am2014376 Increased graphitization in electrospun single suspended carbon nanowires integrated with carbon MEMS and carbon-NEMS platforms 

  17. Bioinspired, Biomimetic Nanobiomaterials Sharma 1 252 2012 10.1680/bbn.12.00010 Micro and nano patterning of carbon electrodes for bioMEMS 

  18. Microsyst Technol Liu 11 343 2005 10.1007/s00542-004-0452-x 

  19. McCreery 1996 Laboratory techniques in electroanalytical chemistry 

  20. Garcia I-B3.3 2009 Fabrication of microfluidic devices using SU-8 for detection and analysis viruses 

  21. Biosens Bioelectron Wang 20 2005 10.1016/j.bios.2004.09.034 From MEMS to NEMS with carbon 

  22. Proc CIRP Ginestra 49 8 2016 10.1016/j.procir.2015.07.020 Electrospinning of poly-caprolactone for scaffold manufacturing: experimental investigation on the process parameters influence 

  23. Ginestra 2016 Proc. SPIE 9932, carbon nanotubes, graphene, and emerging 2D materials for electronic and photonic devices IX, 99320A Fabrication and characterization of polycaprolactone-graphene powder electrospun nanofibers 

  24. CIRP Ann Ceretti 66 1 2017 10.1016/j.cirp.2017.04.122 Electrospinning and characterization of polymer-graphene powder scaffolds 

  25. Biomaterials Chen 73 23 2015 10.1016/j.biomaterials.2015.09.010 Engineering multi-layered skeletal muscle tissue by using 3D microgrooved collagen scaffolds 

  26. Proc CIRP Ginestra 65 19 2017 10.1016/j.procir.2017.04.043 Micro-structuring of titanium collectors by laser ablation technique: a novel approach to produce micro-patterned scaffolds for tissue engineering applications 

  27. 10.1016/j.cirpj.2017.08.002 Ginestra P, Pandini S, Fiorentino A, Benzoni P, Dell'Era P, Ceretti E. Microstructured scaffold for cellular guided orientation : PCL electrospinning on laser ablated titanium collector. CIRP J Manuf Sci Technol; 19: 147-157. 

  28. Proc CIRP Ceretti 65 13 2017 10.1016/j.procir.2017.04.042 Multi-layered scaffolds production via Fused Deposition Modeling (FDM) using an open source 3D printer: process parameters optimization for dimensional accuracy and design reproducibility 

  29. Chang 2011 978-953-307-663-8 Cell responses to surface and architecture of tissue engineering scaffolds, regenerative medicine and tissue engineering - cells and biomaterials 

  30. Tissue Eng B Rev Loh 19 6 485 2013 10.1089/ten.teb.2012.0437 Three-dimensional scaffolds for tissue engineering applications: role of porosity and pore size 

  31. Appl Mater Interfaces Yang 5 10529 2013 10.1021/am402156f Nanotopographical manipulation of focal adhesion formation for enhanced differentiation of human neural stem cells 

  32. Acta Biomater Gupta 5 2560 2009 10.1016/j.actbio.2009.01.039 Aligned and random nanofibrous substrate for the in vitro culture of Schwann cells for neural tissue engineering 

  33. J Neural Eng Richardson 8 2001 Guidance of dorsal root ganglion neurites and Schwann cells by isolated Schwann cell topography on poly (dimethylsiloxane) conduits and films 

  34. Microelectron Eng Limongi 141 135 2015 10.1016/j.mee.2015.02.030 Photolithography and micromolding techniques for the realization of 3D polycaprolactone scaffolds for tissue engineering applications 

  35. J Sci Adv Mater Dev Tran 2 1 2017 Lithography-based methods to manufacture biomaterials at small scales 

  36. Annu Rev Biomed Eng Bajaj 16 247 2014 10.1146/annurev-bioeng-071813-105155 Biofabrication strategies for tissue engineering and regenerative medicine 

  37. Adv Healthcare Mater Fuhrer 7 2018 10.1002/adhm.201700915 3D carbon scaffolds for neural stem cell culture and magnetic resonance imaging 

  38. Int J Mol Sci Zhou 8 884 2007 10.3390/i8080884 Photoresist derived carbon for growth and differentiation of neuronal cells 

  39. Lab a Chip Tan 4 292 2004 10.1039/b403280m Design of microfluidic channel geometries for the control of droplet volume, chemical concentration, and sorting 

  40. Lab a Chip Green 9 677 2009 10.1039/B813516A Effect of channel geometry on cell adhesion in microfluidic devices 

  41. Tissue Eng Part A Mobasseri 21 5 1152 2015 10.1089/ten.tea.2014.0266 Polymer scaffolds with preferential parallel grooves enhance nerve regeneration 

  42. 2008 SU-8 data sheet from 

  43. Martinez-Duarte 2010 Label-free cell sorting using carbon-electrode dielectrophoresis and centrifugal microfluidics 

  44. Quang 19 2016 42nd international conference on micro and nano engineering, Vienna, Austria Fabrication and characterization of pyrolytic carbon string resonators 

  45. J Electrochem Soc Singh 149 78 2002 10.1149/1.1436085 Pyrolysis of negative photoresists to fabricate carbon structures for microelectromechanical systems and electrochemical applications 

  46. Lab a Chip Zhang 4 646 2004 10.1039/b403304c Effect of exposure dose on the replication fidelity and profile of very high aspect ratio microchannels in SU-8 

  47. Rasband 1997 ImageJ, U. S 

  48. Pérez 2013 9781783283958 Image processing with ImageJ 

  49. J Electrochem Soc Ranganathan 147 277 2000 10.1149/1.1393188 Photoresist-derived carbon for microelectromechanical systems and electrochemical applications 

  50. http://www.mitakakohki.co.jp. 

  51. www.digitalsurf.com. 

  52. J Vac Sci Technol A Lyons B 3 447 1985 10.1116/1.583284 

  53. J Micromech Microeng Peterman 13 380 2003 10.1088/0960-1317/13/3/305 

  54. Proc CIRP Benzoni 49 113 2016 10.1016/j.procir.2015.09.004 Biomanufacturing of a chitosan/collagen scaffold to drive adhesion and alignment of human cardiomyocyte derived from stem cells 

  55. Proc CIRP Ginestra 65 225 2017 10.1016/j.procir.2017.04.044 Production of micro-patterned substrates to direct human iPSCs-derived neural stem cells orientation and interaction 

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

오픈액세스(OA) 유형

GREEN

저자가 공개 리포지터리에 출판본, post-print, 또는 pre-print를 셀프 아카이빙 하여 자유로운 이용이 가능한 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로